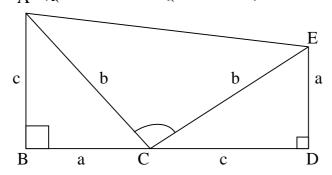
न्य प्राप्त के शिशासातात्मत जनभाना

৯.২ পিথাগোরাসের উপপাদ্য

একটি সমকোণী ত্রিভুজের অতিভুজের উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান। 💮 🛕 (দুইটি সমকোণী ত্রিভুজের সাহায্যে)



বিশেষ নির্বচন : মনে করি, ABC সমকোণী ত্রিভুজের $\angle B = 90^0$ অতিভুজ AC = b, AB = c ও BC = a। প্রমাণ করতে হবে যে, $AC^2 = AB^2 + BC^2$ অর্থাৎ $b^2 = c^2 + a^2$

অঙ্কন : BC কে D পর্যন্ত বর্ধিত করি যেন CD = AB = c হয়। D বিন্দুতে বর্ধিত BC এর উপর DE লম্ব আঁকি, যেন DE = BC = a হয়। C, E ও A, E যোগ করি।

ধাপ	যথাৰ্থতা
(3) $\triangle ABC \subseteq \triangle CDE \subseteq AB = CD = c, BC = DE$	
= a এবং অন্তর্ভুক্ত ∠ABC = অন্তভুক্ত ∠CDE [
প্রত্যেকে সমকোণ]	[বাহু- কোণ- বাহু উপপাদ্য]
সুতারাং, ∆ABC≅ ∆CDE	[415- 241.1- 415 0 41.1149]
∴ AC = CE = b এবং ∠BAC = ∠ECD	
(২) আবার, AB⊥ BD এবং ED⊥BD বলে AB।। ED সুতারাং, ABDE একটি ট্রাপিজিয়াম।	[ছেদকের দুই অন্তঃস্থ কোণের সমষ্টি 2 সমকোণ]
(৩) তদুপরি, ∠ACB +∠BAC = ∠ACB + ∠ECD = এক সমকোণ।	
∴ ∠ACE = এক সমকোণ। ∆ACE সমকোণী ত্রিভুজ। এখন ABDE ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল	
$= (\Delta$ ক্ষেত্র $ABC + \Delta$ ক্ষেত্র $CDE + \Delta$ ক্ষেত্র ACE $)$	[ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রের ক্ষেত্রফল
বা, $\frac{1}{2}$ BD(AB + DE) = $\frac{1}{2}$ ac + $\frac{1}{2}$ ac + $\frac{1}{2}$ b ²	= $\frac{1}{2}$ সমান্তরাল বাহুদ্বয়ের যোগফল $ imes$

বা,
$$\frac{1}{2}$$
 (BC+CD)(AB+DE) = $\frac{1}{2}$ [2ac + b²]

বা,
$$(a+c)(a+c) = 2ac + b^2$$
 [2 দারা গুণ করে]

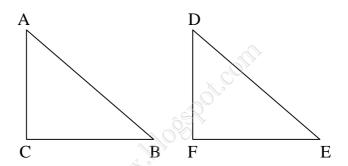
বা,
$$a^2 + 2ac + c^2 = 2ac + b^2$$

বা,
$$a^2 + c^2 = b^2$$
 (প্রমাণিত)

সমান্তরাল বাহুদ্বয়ের মধ্যবর্তী দূরত্ব]

৯.৩ পিথাগোরাসের উপপাদ্যের বিপরীত উপপাদ্য

যদি কোনো ত্রিভুজের একটি বাহুর উপর অঙ্কিত বর্গক্ষেত্র অপর দুই বাহুর উপর অঙ্কিত বর্গক্ষেত্রদ্বয়ের সমষ্টির সমান হয়, তবে শেষোক্ত বাহুদ্বয়ের অন্তর্ভুক্ত কোণটি সমকোণ হবে।



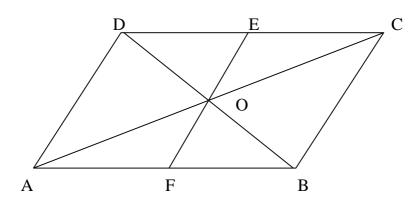
বিশেষ নির্বচন : মনে করি, $\triangle ABC$ এর $AB^2=AC^2+BC^2$. প্রমাণ করতে হবে যে, $\angle C=$ এক সমকোণ।

অঙ্কন : এমন একটি ত্রিভুজ DEF আঁকি, যেন \angle F এক সমকোণ, EF = BC এবং DF = AC হয়।

ধাপ	যথাৰ্থতা
(3) $DE^2 = EF^2 + DF^2$ $= BC^2 + AC^2$	[কারণ ΔDEFএক সমকোণ]
$=AB^2$ এখন ΔABC ও ΔDEF এ $BC=EF,\ AC=DF$ AB=DE	[কল্পনা]
$\therefore \Delta ABC \cong \Delta DEF$	[বাহু- বাহু- বাহু সর্বসমতা]
∴ ∠C =∠F ∴ ∠F = এক সমকোণ	
∴ ∠C = এক সমকোণ। (প্রমাণিত)	

অনুশীলনী ৯

১। ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু । প্রমাণ করতে হবে যে, এক্ষেত্র AOB + Δ ক্ষেত্র COD = $\frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD) সমাধান :



বিশেষ নির্বচন:

দেওয়া আছে, ABCD সামান্তরিকের অভ্যন্তরে O যেকোনো একটি বিন্দু। O, A; O, B; O, C এবং

O, D যোগ করি। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $AOB + \Delta$ ক্ষেত্র $COD = \frac{1}{2}$ (সামান্তরিকক্ষেত্রে ABCD)

অঙ্কন : O বিন্দু হতে AB- এর উপর OF লম্ব টানি। FO কে E পর্যন্ত এমনভাবে বর্ধিত করি যেন তা CD কে E বিন্দুতে ছেদ করে।

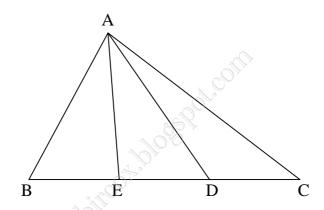
ধাপ	যথাৰ্থতা
(১) যেহেতু AB।। CD এবং EF তাদের ছেদক।	
∴ ∠DEF = ∠ EFB = এক সমকোণ	[একান্তর কোণ এবং EF⊥ AB বলে]
∴ ABCD সামান্তরিকের উচ্চতা EF	
সুতারাং ABCD = AB × EF	[যেহেতু সামান্তরিক ক্ষেত্র = ভুমি ×
এখানে, ΔΑΟΒ এ ভূমি AB এবং উচ্চতা OF	উচ্চতা]
1 1 A D T A D T OF	
$\therefore \Delta$ ক্ষেত্র $AOB = \frac{1}{2} \times AB \times OF$	[∵ ∠OFB = এক সমকোণ]
(২) অনুরূপভাবে, Δ ক্ষেত্র $\mathrm{COD} = \frac{1}{2} \times \mathrm{CD} \times \mathrm{OE}$	[∵ ∠OED = এক সমকোণ তাই OF
2	উচ্চতা]
$=\frac{1}{-} \times AB \times OE$	[সামান্তরিকের বিপরীত বাহু পরস্পর
2	সমান]
(৩) Δ ক্ষেত্র AOB + Δ ক্ষেত্র COD	[(১) ও (২) থেকে]

www.jacebook.com/tanbii.cbooks

$$=\frac{1}{2} \times AB \times OF + \frac{1}{2} \times AB \times OE$$
 $=\frac{1}{2}AB(OF + OE)$
 $=\frac{1}{2}AB.EF$
 $=\frac{1}{2}$ (সামান্তরিক ক্ষেত্র ABCD)
(প্রমাণিত)

২। প্রমাণ কর যে, ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজক্ষেত্রটিকে সমান ক্ষেত্রফলবিশিষ্ট দুইটি ত্রিভুজক্ষেত্রে বিভক্ত করে।

সমাধান:



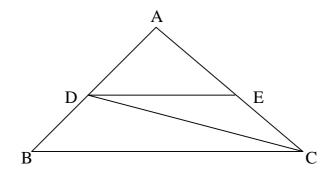
বিশেষ নির্বচন : মনে করি, ΔABC - এ AD একটি মধ্যমা। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $ABD=\Delta$ ক্ষেত্র ACD

অঙ্কন : A বিন্দু থেকে BC - এর উপর AE লম্ব আঁকি।

ধাপ	যথাৰ্থতা
(১) যেহেতু AD মধ্যমা, সেহেতু BD = CD	
Δ ক্ষেত্র ABD - এর ক্ষেত্রফল $==rac{1}{2} imes BD imes AE$	[ত্রিভুজের ক্ষেত্রফল = $\frac{1}{2}$ ×ভূমি×উচ্চতা]
(২) আবার, ∆ ক্ষেত্র ACD- এর ক্ষেত্রফল	2
$= \frac{1}{2} \times CD \times AE$	
$= \frac{1}{2} \times BD \times AE$	
$\therefore \Delta$ ক্ষেত্র $\mathrm{ABD} = \Delta$ ক্ষেত্র ACD ।	
(প্রমাণিত)	[(১) থেকে]

৩। $\triangle ABC$ এ $\triangle AB$ ও $\triangle AC$ বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে $\triangle BC$ ৪. প্রমাণ করতে হবে যে, $\triangle CDE = \frac{1}{2}$ ($\triangle C$ ক্ষত্র $\triangle BC$).

সমাধান:



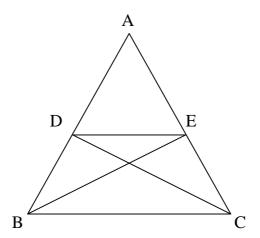
বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $CDE=\frac{1}{4}(\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি।

ধাপ ৪৯%	যথাৰ্থতা
(১) যেহেতু, D, AB- এর মধ্যবিন্দু। সেহেতু CD,	
ΔABC- এর মধ্যমা।	
$\therefore \Delta$ কেত্র $CDE = \frac{1}{2}(\Delta$ কেত্র $ABC)$	
(২) আবার, যেহেতু ΔACD- এর AC বাহুর মধ্যবিন্দু E	[ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজকে
সুতারাং DE, ΔACD- এর মধ্যমা	দুইটি সমান অংশে বিভক্র করে]
$\therefore \Delta$ ক্ষেত্র $CDE = \frac{1}{2}(\Delta$ ক্ষেত্র $ACD)$	[ত্রিভুজের যেকোনো মধ্যমা ত্রিভুজকে সমান দুইটি অংশে বিভক্ত করে]
$=\frac{1}{2}\times\frac{1}{2}$ (Δ কেন ABC)	[(১) থেকে]
$=\frac{1}{4}(\Delta$ কেত্র ABC)	
অর্থাৎ Δ ক্ষেত্র $ ext{CDE} = rac{1}{4} (\Delta$ ক্ষেত্র $ ext{ABC})$	
(প্রমাণিত)	

8। ΔABC এ BC ভূমির সামান্তরাল যেকোণ সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δ ন্দেত্র $DBE = \Delta$ ন্দেত্র EBC এবং $= \Delta$ ন্দেত্র CDE

সমাধান:



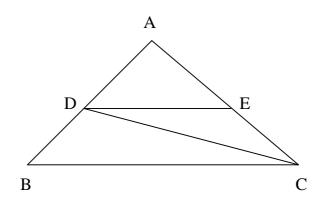
বিশেষ নির্বচন: দেওয়া আছে, ΔABC- এর ভূমি BC - এর সমান্তরাল যেকোনো সরলরেখা AB ও AC বাহুকে যথাক্রমে D ও E বিন্দুতে ছেদ করে। প্রমাণ করতে হবে যে, Δক্ষেত্র DBC = Δক্ষেত্র EBC এবং Δক্ষেত্র BDE = Δক্ষেত্র CDE

অঙ্কন :

ধাপ	যথাৰ্থতা
(১) ΔDBC ও ΔEBC - এ ভুমি BC = ভুমি BC, BD = CE এবং ∠EBC=∠DCB ∴ এক্ষেত্র DBC = এক্ষেত্র EBC	[ত্রিভুজদ্বয় একই ভূমি BC এর ওপর এবং একই সমান্তরাল রেখাযুগল BC ও DE এর মধ্যে অবস্থিত]
(২) ΔBDE ও ΔCDE- এ ভুমি DE = ভুমি DE, BD = CE এবং ∠BED= ∠CDE অতএব, Δক্ষেত্ৰ BDE = Δক্ষেত্ৰ CDE (প্রমাণিত)	[ত্রিভুজদ্বয় একই ভূমি DE এর ওপর এবং একই সমান্তরাল রেখাযুগল DE ও BC এর মধ্যে অবস্থিত।]

ে। $\triangle ABC$ এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E । প্রমাণ কর যে, \triangle ক্ষেত্র ADE $\frac{1}{4}$ (\triangle ক্ষেত্র ABC)

সমাধান:



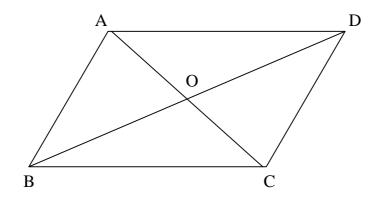
বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর AB ও AC বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে D ও E। প্রমাণ করতে হবে যে, Δ ক্ষেত্র $ADE=\frac{1}{4}(\Delta$ ক্ষেত্র ABC)

অঙ্কন: C, D এবং D, E যোগ করি

ধাপ্র	যথাৰ্থতা
(১) যেহেতু, D, AB- এর মধ্যবিন্দু সেহেতু CD, ΔABC-এর একটি মধ্যমা। ∴ Δ ক্ষেত্র ACD = ½ (Δ ক্ষেত্র ABC) (২) যেহেতু Δ ক্ষেত্র ACD- এর AC বাহুর মধ্যবিন্দু B	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে]
সেহেতু DE, \triangle ACD- এর মধ্যমা। \triangle শেত ADE $=\frac{1}{2}(\triangle$ ক্ষেত্র ACD) $=\frac{1}{2} imes \frac{1}{2}(\triangle$ ক্ষেত্র ABC) $=\frac{1}{4}(\triangle$ ক্ষেত্র ABC)	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান ক্ষেত্রফল বিশিষ্ট দুইটি অংশে ভাগ করে] [(১) থেকে]
অর্থাৎ Δ ক্ষেত্র $\mathrm{ADE} = rac{1}{4} (\Delta$ ক্ষেত্র $\mathrm{ABC}).$	

,

৬। প্রমাণ কর যে, সামান্তরিকের কর্ণদ্বয় সামান্তরিকক্ষেত্রটিকে চারটি সমান ত্রিভুজক্ষেত্রে বিভক্ত করে। সমাধান:

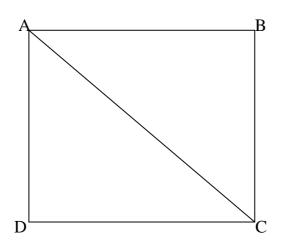


বিশেষ নির্বচন : মনে করি, ABCD একটি সামান্তরিক। এর AC ও BD কর্ণদ্বয় পরস্পর O বিন্দুতে ছেদ করেছে। প্রমাণ করতে হবে যে, Δ ক্ষেত্র Δ AOB = Δ ক্ষেত্র BOC = Δ ক্ষেত্র COD = Δ ক্ষেত্র AOD.

ধাপ ্র	যথাৰ্থতা
(১) AO = CO এবং BO = DO	[সামান্তরিকের কর্ণদ্বয় পরস্পরকে
	সমদ্বিখন্ডিত করে]
(২) এখন, ΔABC- এ BO মধ্যুমা	
$\therefore \Delta$ ক্ষেত্র $\mathrm{AOB} = \Delta$ ক্ষেত্র BOC	[ত্রিভুজের মধ্যমা ত্রিভুজকে সমান
$=\frac{1}{2}\Delta$ কেত্র ABC	ক্ষেত্রফলবিশিষ্ট দুইটি অংশে বিভক্ত
<u></u>	করে]
(৩) ΔADC- এ DO মধ্যমা	[সামান্তরিকের কর্ণ সামান্তরিক ক্ষেত্রকে
$\therefore \Delta$ কেত্র $\mathrm{COD} = \Delta$ কেত্র AOD	দুইটি সর্বসম ত্রিভুজে বিভক্ত করে]
$=\frac{1}{2}\Delta$ ক্ষেত্র ADC	
$\therefore \Delta ABC = \Delta ADC$	
বা, Δ ক্ষেত্র $\mathrm{ABC} = \Delta$ ক্ষেত্র ADC	[সর্বস্ব ত্রিভুজদ্বয়ের ক্ষেত্রফল সমান]
$\therefore rac{1}{2}\Delta$ ক্ষেত্র $\mathrm{ABC} = rac{1}{2}\Delta$ ক্ষেত্র ADC	
(8) Δ ক্ষেত্র $\mathrm{AOB} = \Delta$ ক্ষেত্র $\mathrm{BOC} = \Delta$ ক্ষেত্র $\mathrm{COD} =$	[ধাপ (২) ও (৩) হতে]
∆ক্ষেত্ৰ AOD	
(প্রমাণিত)	

www.jucebook.com/tuntotr.ebooks

৭। প্রমাণ কর যে, কোনো বর্গক্ষেত্র তার কর্ণের উপর অঙ্কিত বর্গক্ষেত্রের অর্ধেক। সমাধান:



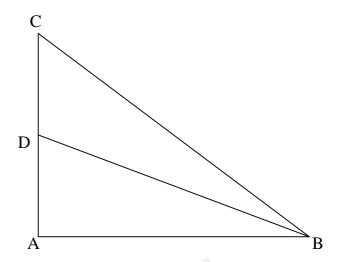
বিশেষ নির্বচন : মনে করি, ABCD একটি বর্গক্ষেত্র। এর AC কর্ণ। প্রমাণ করতে হবে যে, $AB^2=rac{1}{2}AC^2$

ধাপ ১৯%	যথাৰ্থতা
(১) △ABC- এ ∠B = এক সমকোণ	[বর্গক্ষেত্রের সকল কোণ সমকোণ]
∴ ∆ABC সমকোণী এবং AC এর অতিভুজ।	
(২) এখন, $\triangle ABC$ - এ $AC^2 = AB^2 + BC^2$	[পীথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AC^2 = AB^2 + AB^2$	[বর্গক্ষেত্রের বাহুগুলো পরস্পর সমান]
বা, $2AB^2 = AC^2$	
$\therefore AB^2 = \frac{1}{2}AC^2$ (প্রমাণিত)	

৮। ABC ত্রিভুজের ∠A = এক সমকোণ। D, AC এর উপরস্থ একটি বিন্দু। প্রমাণ কর যে,

$$BC^2 + AD^2 = BD^2 + AC^2$$

সমাধান:

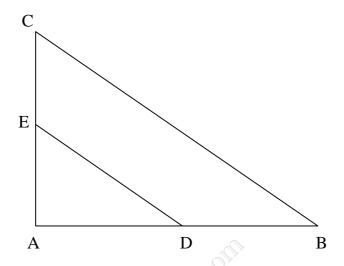


বিশেষ নির্বচন : দেওয়া আছে, ABC ত্রিভুজের $\angle A=$ এক সমকোণ এবং D, AC- এর উপস্থ একটি বিন্দু। প্রমাণ করতে হবে যে, $BC^2+AD^2=BD^2+AC^2$

ধাপ 🎾	যথাৰ্থতা
(১) যেহেতু, ABC সমকোণী ত্রিভুজে $\angle A = \omega$ ক সমকোণ এবং BC এর অতিভুজ। $BC^2 = AB^2 + AC^2$ (২) অনুরূপভাবে, ABD সমকোণী ত্রিভুজের অতিভুজ	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
BD $\therefore AB^{2} + AD^{2} = BD^{2}$ বা, $AD^{2} = BD^{2} - AB^{2}$ (৩) এখানে, $BC^{2} + AD^{2}$ $= AB^{2} + AC^{2} + BD^{2} - AB^{2}$ সূতারাং, $BC^{2} + AD^{2} = BD^{2} + AC^{2}$	[পিথাগোরাসের উপপাদ্য অনুযায়ী] [(১) ও (২) থেকে]
(প্রমাণিত)	

৯। ΔABC ত্রিভুজের $\angle A$ = একসমকোণ D ও E যথাক্রমে AB ও AC এর মধ্যবিন্দু হলে, প্রমাণ কর যে, $DE^2=CE^2+BD^2$ ।

সমাধান:

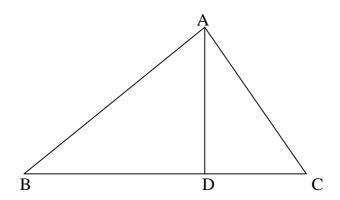


বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এর $\angle A=$ এক সমকোণ। D ও E যথাক্রমে AB ও AC- এর মধ্যবিন্দু। প্রমাণ করতে হবে যে, $DE^2=CE^2+BD^2$

ধাপ ্র	যথাৰ্থতা
(১) এখানে, AD = BD এবং AE = CE	[D ও E যথাক্রমে AB ও AC- এর
(২) এখন ADE সমকোণী ত্রিভুজে,	মধ্যবিন্দু।]
$DE^2 = AE^2 + AD^2$	[পিথাগোরাসের উপপাদ্য অনুসারে]
$\therefore DE^2 = CE^2 + BD^2 \qquad \text{(প্রমাণিত)}$	[(১) থেকে]

,

১০। ΔABC এ BC এর উপর লম্ব AD এবং AB > AC প্রমাণ কর যে, $AB^2 - AC^2 = BD^2 - CD^2$ সমাধান :

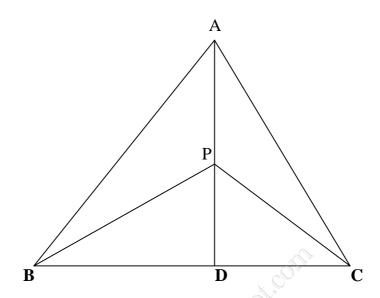


বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এ BC এর উপর লম্ব AD এবং AB > AC প্রমাণ করতে হবে যে, $AB^2 - AC^2 = BD^2 - CD^2$

ধাপ	যথাৰ্থতা
(১) ∆ABC এ AD, BC- এর উপর লম্ব।	
∴ ∆ABC ও ∆ACD উভয়ই সমকোণী ত্রিভুজ।	
(২) এখন ABD সমকোণী ত্রিভুজে AB অতিভুজ	Ceremon Totale
$\therefore BD^2 + AD^2 = AB^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AB^2 - BD^2$	
(৩) আবার, ACD সমকোণী ত্রিভুজে	
$AD^2 + CD^2 = AC^2$	[পিথাগোরাসের উপপাদ্য অনুযায়ী]
বা, $AD^2 = AC^2 - CD^2$,
(8) $AB^2 - BD^2 = AC^2 - CD^2$	[(২) ও (৩) থেকে]
$AB^2 - AC^2 = BD^2 - CD^2$ (প্রমাণিত)	

১১। ΔABC এ BC এর উপর AD লম্ব এবং AD এর উপর P যেকোনো বিন্দু ও AB > AC প্রমাণ কর যে, $AB^2 - PC^2 = AB^2 - AC^2$

সমাধান:



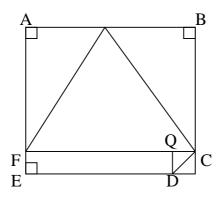
বিশেষ নির্বচন : দেওয়া আছে, ΔABC - এ BC- এর উপর লম্ব AD এবং AD- এর উপর P যেকোনো বিন্দু ও AB > AC IP, B ও P, C যোগ করি। প্রমাণ করতে হবে যে $AB^2 - PC^2 = AB^2 - AC^2$

প্রমাণ:

ধাপ	যথাৰ্থতা
(১) ΔABC - এ AD⊥ BC, ΔABD, ΔACD, ΔBI এবং ΔCPD প্রত্যেকেই সমকোণী ত্রিভুজ	
(২) এখন $\triangle ABD$ - এ, $AB^2 = BD^2 + AD^2$	[সমকোণী ত্রিভুজের অতিভুজের উপর বর্গক্ষেত্র অপর দুই বাহুর উপর
(9) $\triangle ACD$ - $\triangle AC^2 = AD^2 + CD^2$	বর্গক্ষেত্রের সমষ্টির সমান] [একই কারণে]
(৪) $AB^2 - AC^2 = BD^2 - CD^2$ (৫) আবার, $\Delta BPD - AB^2 = BD^2 + PD^2$	[(২) ও (৩) থেকে] [সমকোণী ত্রিভুজের অতিভুজের উপর
(4) $\triangle PCD - \triangle PC^2 = PD^2 + CD^2$	বর্গক্ষেত্র অপর দুই বাহুর উপর বর্গক্ষেত্রের সমষ্টির সমান] [একই কারণে]
(9) $PB^2 - PC^2 = BD^2 - CD^2$ $PB^2 - PC^2 = AB^2 - AC^2$	[(৫) ও (৬) থেকে] [(৪) থেকে]

(প্রমাণিত)

১২ | ABCD বহুভুজে AE | BC, CF⊥ AE এবং DQ⊥ CF, ED =10 মি.মি. EF = 2 মি.মি. BC = 8 মি.মি. AB = 12 মি.মি.



উপরের তথ্যের ভিত্তিতে নিচের (১- ৪) নম্বর প্রশ্নের উত্তর দাও:

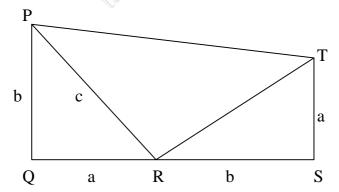
- ১। ABCD চতুর্ভুজের ক্ষেত্রফল কত বর্গ মি.মি.?
 - (ক) 64
- (খ) 96

- (গ) 100
- (ঘ) 144
- ২। নিচের কোনটি FPC ত্রিভুজের ক্ষেত্রফল নির্ণয় কর?
 - (ক) 32
- (খ) 48
- (গ) 72
- (ঘ) 60

- ৩। CD এর দৈর্ঘ্য নিচের কোনটিতে প্রকাশ পায়?
 - **(ক)** 2√2
- (খ) 4

- (গ) 4√2
- (ঘ) 8
- 8। নিচের কোনটিতে ΔFPC ও ΔDQC এর ক্ষেত্রফলের অন্তর নির্দেশ কর?
 - **(ক)** 46 বৰ্গ একক (খ) 48 বৰ্গ একক (গ) 50 বৰ্গ একক
- (ঘ) 52 বর্গ একক

301



- (ক) PQST কী ধরনের চতুর্ভুজ? স্বপক্ষে যুক্তি দাও।
- (খ) দেখাও যে, ∆PRT সমকোণী।
- (গ) প্রমাণ কর যে, $PR^2 = PQ^2 + QR^2$

www.jacebook.com/tanbii.ebooks

সমাধান:

- (ক) PQST চতুর্ভজটি ট্রাপিজিয়াম। কারণ PQST চতুর্ভুজের বিপরীত বাহু PQ ও TS বাহুদ্বয় সমান্তরাল এবং অপর বিপরীত PT ও QS বাহুদ্বয় অসমান্তরাল।
- (খ) ΔPQR ও ΔRST এ PQ = RS = b, QR = ST = a এবং $\angle PQR = \angle RST$ [প্রত্যেক 90^0] $\Delta PQR \cong \Delta RST$ $\therefore PR = RT = c$ এবং QPR = TRS আবার, $PQ \perp QS$ এবং $TS \perp QS$ বলে, $PQ \mid ITS$ সুতারাং, PQST একটি ট্রাপিজিয়াম. এখন, $\angle PRO + \angle QPR = \angle PRO + \angle TRS = 1$ সমকোণ $\therefore \angle PRT =$ এক সমকোণ। সুতারাং ΔPQR সমকোণী ত্রিভুজ। (দেখানো হলো)
- (গ) এখন, PQST ট্রাপিজিয়াম ক্ষেত্রের ক্ষেত্রফল = Δ ক্ষেত্র PQR + Δ ক্ষেত্র RST Δ ক্ষেত্র PRT বা, $\frac{1}{2}QS(PQ+TS)=\frac{1}{2}ab+\frac{1}{2}ab+\frac{1}{2}c^2$ বা, $\frac{1}{2}(QR+RS)(PQ+TS)=\frac{1}{2}(2ab+c^2)$ বা, $\frac{1}{2}(a+b)(b+a)=\frac{1}{2}(2ab+c^2)$ বা, $a^2+2ab+b^2=2ab+c^2$ বা, $a^2+b^2=c^2$ বা, $c^2=b^2+a^2$

 $\therefore PR^2 = PQ^2 + QR^2$ (প্রমাণিত)