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WIT’S	END
	

The	 Princess	 Bride	 is	 a	 brilliant	 whimsical	 comedy;	 among	 its	 many
memorable	 scenes,	 the	 battle	 of	wits	 between	 the	 hero	 (Westley)	 and	 a	 villain
(the	 Sicilian	 Vizzini)	 ranks	 high.	Westley	 challenges	 Vizzini	 to	 the	 following
game.	Westley	 will	 poison	 one	 of	 two	 glasses	 of	 wine	 out	 of	 Vizzini’s	 sight.
Then	Vizzini	will	 choose	 to	drink	 from	one,	 and	Westley	must	 drink	 from	 the
other.	Vizzini	 claims	 to	 be	 far	 smarter	 than	Westley:	 “Have	you	 ever	 heard	of
Plato,	 Aristotle,	 Socrates?…Morons.”	 He	 therefore	 believes	 he	 can	 win	 by
reasoning.

All	I	have	to	do	is	divine	from	what	I	know	of	you:	are	you	the	sort	of	man
who	 would	 put	 the	 poison	 into	 his	 own	 goblet	 or	 his	 enemy’s?	 Now,	 a
clever	man	would	 put	 the	 poison	 into	 his	 own	 goblet,	 because	 he	would
know	that	only	a	great	fool	would	reach	for	what	he	was	given.	I	am	not	a
great	 fool,	 so	 I	 can	 clearly	 not	 choose	 the	wine	 in	 front	 of	 you.	But	 you
must	have	known	I	was	not	a	great	fool,	you	would	have	counted	on	it,	so	I
can	clearly	not	choose	the	wine	in	front	of	me.

	

He	 goes	 on	 to	 other	 considerations,	 all	 of	which	 go	 in	 similar	 logical	 circles.
Finally	he	distracts	Westley,	switches	the	goblets,	and	laughs	confidently	as	both



drink	from	their	respective	glasses.	He	says	to	Westley:	“You	fell	victim	to	one
of	the	classic	blunders.	The	most	famous	is	‘Never	get	involved	in	a	land	war	in
Asia,’	but	only	slightly	 less	well	known	is	 this:	 ‘Never	go	 in	against	a	Sicilian
when	death	is	on	the	line.’”	Vizzini	is	still	laughing	at	his	expected	victory	when
he	suddenly	falls	over	dead.

Why	did	Vizzini’s	reasoning	fail?	Each	of	his	arguments	was	innately	self-
contradictory.	 If	 Vizzini	 reasons	 that	 Westley	 would	 poison	 goblet	 A,	 his
deduction	is	that	he	should	choose	goblet	B.	But	Westley	can	also	make	the	same
logical	deduction,	in	which	case	he	should	poison	goblet	B.	But	Vizzini	should
foresee	this,	and	therefore	should	choose	goblet	A.	But…There	is	no	end	to	this
circle	of	logic.*

Vizzini’s	dilemma	arises	 in	many	games.	Imagine	you	are	about	 to	shoot	a
penalty	kick	in	soccer.	Do	you	shoot	to	the	goalie’s	left	or	right?	Suppose	some
consideration—your	being	left-footed	versus	right-footed,	 the	goalie	being	left-
handed	versus	 right-handed,	 or	which	 side	 you	 chose	 the	 last	 time	you	 took	 a
penalty	kick—suggests	that	you	should	choose	left.	If	the	goalie	is	able	to	think
through	this	thinking,	then	he	will	mentally	and	even	physically	prepare	to	cover
that	 side,	 so	 you	will	 do	 better	 by	 choosing	 his	 right	 instead.	 But	what	 if	 the
goalie	raises	his	level	of	thinking	one	notch?	Then	you	would	have	done	better
by	 sticking	 to	 the	 initial	 idea	 of	 kicking	 to	 his	 left.	And	 so	 on.	Where	 does	 it
end?

The	only	logically	valid	deduction	in	such	situations	is	that	if	you	follow	any
system	or	pattern	in	your	choices,	it	will	be	exploited	by	the	other	player	to	his
advantage	and	 to	your	disadvantage;	 therefore	you	should	not	 follow	any	such
system	or	pattern.	 If	you	are	known	 to	be	a	 left-side	kicker,	goalies	will	cover
that	side	better	and	save	your	kicks	more	often.	You	have	to	keep	them	guessing
by	being	unsystematic,	or	random,	on	any	single	occasion.	Deliberately	choosing
your	 actions	 at	 random	may	 seem	 irrational	 in	 something	 that	 purports	 to	 be
rational	 strategic	 thinking,	 but	 there	 is	 method	 in	 this	 apparent	 madness.	 The
value	 of	 randomization	 can	 be	 quantified,	 not	 merely	 understood	 in	 a	 vague
general	sense.	In	this	chapter	we	will	explicate	this	method.

MIXING	IT	UP	ON	THE	SOCCER	FIELD
	

The	 penalty	 kick	 in	 soccer	 is	 indeed	 the	 simplest	 and	 the	 best-known
example	 of	 the	 general	 situation	 requiring	 random	moves	 or,	 in	 gametheoretic
jargon,	mixed	strategies.	 It	 has	been	much	 studied	 in	 theoretical	 and	empirical
research	on	games	and	discussed	in	the	media.1



A	penalty	is	awarded	for	a	specified	set	of	prohibited	actions	or	fouls	by	the
defense	in	a	marked	rectangular	area	in	front	of	its	goal.	Penalty	kicks	are	also
used	 as	 a	 tiebreaker	 of	 last	 resort	 at	 the	 end	 of	 a	 soccer	match.	The	 goal	 is	 8
yards	wide	and	8	feet	high.	The	ball	is	put	on	a	spot	12	yards	from	the	goal	line
directly	 in	 front	 of	 the	midpoint	 of	 the	 goal.	 The	 kicker	 has	 to	 shoot	 the	 ball
directly	from	this	spot.	The	goalie	has	to	stand	on	the	goal	line	at	the	midpoint	of
the	goal	and	is	not	allowed	to	leave	the	goal	line	until	the	kicker	strikes	the	ball.

A	well-kicked	ball	takes	only	two-tenths	of	a	second	to	go	from	the	spot	to
the	 goal	 line.	 A	 goalie	 who	waits	 to	 see	which	way	 the	 ball	 has	 been	 kicked
cannot	hope	 to	 stop	 it	 unless	 it	 happens	 to	be	aimed	directly	 at	him.	The	goal
area	 is	wide;	 therefore	 the	 goalie	must	 decide	 in	 advance	whether	 to	 jump	 to
cover	one	side	and,	if	so,	whether	to	jump	left	or	right.	The	kicker	in	his	run	up
to	 the	 spot	must	 also	decide	which	way	 to	kick	before	he	 sees	which	way	 the
goalie	is	leaning.	Of	course	each	will	do	his	best	to	disguise	his	choice	from	the
other.	Therefore	the	game	is	best	regarded	as	one	with	simultaneous	moves.	In
fact,	it	is	rare	for	the	goalie	to	stand	in	the	center	without	jumping	left	or	right,
and	also	relatively	rare	for	the	kicker	to	kick	to	the	center	of	the	goal,	and	such
behavior	 can	 also	 be	 explained	 theoretically.	 Therefore	 we	 will	 simplify	 the
exposition	by	limiting	each	player	to	just	two	choices.	Since	kickers	usually	kick
using	the	inside	of	their	foot,	 the	natural	direction	of	kicking	for	a	right-footed
kicker	is	to	the	goalie’s	right,	and	for	a	left-footed	kicker	it	is	to	the	goalie’s	left.
For	 simplicity	 of	 writing	 we	 will	 refer	 to	 the	 natural	 side	 as	 “Right.”	 So	 the
choices	 are	Left	 and	Right	 for	 each	 player.	When	 the	 goalie	 chooses	Right,	 it
means	the	kicker’s	natural	side.

With	two	choices	for	each	player	and	simultaneous	moves,	we	can	depict	the
outcomes	 in	 the	 usual	 2-by-2	 game	 payoff	 table.	 For	 each	 combination	 of
choices	of	Left	and	Right	by	each	of	the	two	players,	there	is	still	some	element
of	chance;	 for	example,	 the	kick	may	sail	over	 the	crossbar,	or	 the	goalie	may
touch	the	ball	only	to	deflect	it	into	the	net.	We	measure	the	kicker’s	payoff	by
the	percentage	of	times	a	goal	is	scored	for	that	combination	of	choices,	and	the
goalie’s	payoff	by	the	percentage	of	times	a	goal	is	not	scored.

Of	course	these	numbers	are	specific	to	the	particular	kicker	and	the	goalie,
and	detailed	data	are	available	from	the	top	professional	soccer	leagues	in	many
countries.	 For	 illustrative	 purposes,	 consider	 the	 average	 over	 a	 number	 of
different	kickers	and	goalies,	collected	by	Ignacio	Palacios-Huerta,	from	the	top
Italian,	Spanish,	and	English	leagues	for	the	period	1995–2000.	Remember	that
in	each	cell,	the	payoff	shown	in	the	southwest	corner	belongs	to	the	row	player
(kicker),	 and	 that	 shown	 in	 the	 northeast	 corner	 belongs	 to	 the	 column	 player
(goalie).	The	kicker’s	payoffs	are	higher	when	the	two	choose	the	opposite	sides



than	when	they	choose	the	same	side.	When	the	two	choose	opposite	sides,	the
kicker’s	 success	 rate	 is	almost	 the	 same	whether	 the	 side	 is	natural	or	not;	 the
only	reason	for	failure	is	a	shot	that	goes	too	wide	or	too	high.	Within	the	pair	of
outcomes	when	the	two	choose	the	same	side,	the	kicker’s	payoff	is	higher	when
he	chooses	his	natural	side	than	when	he	chooses	his	non-natural	side.	All	of	this
is	quite	intuitive.

	
Let	us	look	for	a	Nash	equilibrium	of	this	game.	Both	playing	Left	is	not	an

equilibrium	because	when	the	goalie	is	playing	Left,	the	kicker	can	improve	his
payoff	from	58	 to	93	by	switching	 to	Right.	But	 that	cannot	be	an	equilibrium
either,	because	then	the	goalie	can	improve	his	payoff	from	7	to	30	by	switching
to	Right	also.	But	 in	 that	case	 the	kicker	does	better	by	switching	 to	Left,	and
then	the	goalie	does	better	by	also	switching	to	Left.	In	other	words,	the	game	as
depicted	does	not	have	a	Nash	equilibrium	at	all.

The	cycles	of	switching	neatly	follow	the	cycles	of	Vizzini’s	circular	logic	as
to	which	 goblet	would	 contain	 the	 poison.	And	 the	 fact	 that	 the	 game	 has	 no
Nash	 equilibrium	 in	 the	 stated	 pairs	 of	 strategies	 is	 exactly	 the	 gametheoretic
statement	of	 the	 importance	of	mixing	one’s	moves.	What	we	need	 to	do	 is	 to
introduce	mixing	as	a	new	kind	of	strategy	and	then	look	for	a	Nash	equilibrium
in	this	expanded	strategy	set.	To	prepare	for	that,	we	will	refer	to	the	strategies
originally	specified—Left	and	Right	for	each	player—as	the	pure	strategies.

Before	we	 proceed	with	 the	 analysis,	 let	 us	 simplify	 the	 game	 table.	 This
game	has	the	special	feature	that	the	two	players’	interests	are	exactly	opposed.
In	 each	 cell,	 the	 goalie’s	 payoff	 is	 always	 100	 minus	 the	 kicker’s	 payoff.
Therefore,	comparing	cells,	whenever	 the	kicker	has	a	higher	payoff	 the	goalie
has	a	lower	payoff,	and	vice	versa.

Many	people’s	raw	intuition	about	games,	derived	from	their	experience	of
sports	 just	 like	 this	 one,	 is	 that	 each	 game	 must	 have	 a	 winner	 and	 a	 loser.
However,	in	the	general	world	of	games	of	strategy,	such	games	of	pure	conflict
are	relatively	rare.	Games	in	economics,	where	the	players	engage	in	voluntary
trade	 for	mutual	 benefit,	 can	 have	 outcomes	where	 everyone	wins.	 Prisoners’



dilemmas	 illustrate	 situations	 where	 everyone	 can	 lose.	 And	 bargaining	 and
chicken	 games	 can	 have	 lopsided	 outcomes	 in	 which	 one	 side	 wins	 at	 the
expense	of	the	other.	So	most	games	involve	a	mixture	of	conflict	and	common
interest.	 However,	 the	 case	 of	 pure	 conflict	 was	 the	 first	 to	 be	 studied
theoretically	and	retains	some	special	interest.	As	we	have	seen,	such	games	are
called	zero-sum,	 the	 idea	being	 that	 the	payoff	of	one	player	 is	always	exactly
the	negative	of	 that	of	 the	other	player,	or,	more	generally,	constant-sum,	as	 in
the	present	case,	where	the	two	players’	payoffs	always	sum	to	100.

The	game	table	for	such	games	can	be	simplified	in	appearance	by	showing
only	 one	 player’s	 payoff,	 since	 the	 other’s	 payoff	 may	 be	 understood	 as	 the
negative	of	that	of	the	first	player	or	as	a	constant	(such	as	100)	minus	the	first
player’s	payoff,	as	is	the	case	in	this	example.	Usually	the	row	player’s	payoff	is
shown	explicitly.	 In	 that	 case,	 the	 row	player	prefers	outcomes	with	 the	 larger
numbers,	 and	 the	 column	 player	 prefers	 outcomes	 with	 the	 smaller	 numbers.
With	this	convention,	the	payoff	table	for	the	penalty	kick	game	looks	like	this:

	
If	you	are	the	kicker,	which	of	the	two	pure	strategies	would	you	prefer?	If

you	choose	your	Left,	 the	goalie	can	keep	your	success	percentage	down	to	58
by	choosing	his	Left;	if	you	choose	your	Right,	the	goalie	can	keep	your	success
percentage	down	to	70	by	choosing	his	Right	also.*	Of	 the	 two,	you	prefer	 the
(Right,	Right)	combination.

Can	 you	 do	 better?	 Suppose	 you	 choose	 Left	 or	 Right	 at	 random	 in
proportions	of	50:50.	For	example,	as	you	stand	ready	to	run	up	and	kick,	you
toss	a	coin	in	the	palm	of	your	hand	out	of	the	goalie’s	sight	and	choose	Left	if
the	coin	shows	tails	and	Right	if	it	shows	heads.	If	the	goalie	chooses	his	Left,
your	mixture	will	succeed	1/2	×	58	+	1/2	×	93	=	75.5	percent	of	the	time;	if	the
goalie	chooses	his	Right,	your	mixture	will	succeed	1/2	×	95	+	1/2	×	70	=	82.5
percent	of	the	time.	If	the	goalie	believes	you	are	making	your	choice	according
to	such	a	mixture,	he	will	choose	his	Left	to	hold	your	success	rate	down	to	75.5
percent.	But	that	is	still	better	than	the	70	you	would	have	achieved	by	using	the
better	of	your	two	pure	strategies.



An	easy	way	to	check	whether	randomness	is	needed	is	to	ask	whether	there
is	 any	 harm	 in	 letting	 the	 other	 player	 find	 out	 your	 actual	 choice	 before	 he
responds.	When	 this	 would	 be	 disadvantageous	 to	 you,	 there	 is	 advantage	 in
randomness	that	keeps	the	other	guessing.

Is	50:50	the	best	mixture	for	you?	No.	Try	a	mixture	where	you	choose	your
Left	40	percent	of	the	time	and	your	Right	60	percent	of	the	time.	To	do	so,	you
might	 take	 a	 small	 book	 in	your	pocket,	 and	 as	you	 stand	 ready	 to	 run	up	 for
your	kick,	take	it	out	and	open	it	at	a	random	page	out	of	the	goalie’s	sight.	If	the
last	 digit	 of	 the	 page	 number	 is	 between	 1	 and	 4,	 choose	 your	 Left;	 if	 it	 is
between	 5	 and	 0,	 choose	 your	 Right.	 Now	 the	 success	 rate	 of	 your	 mixture
against	 the	 goalie’s	Left	 is	 0.4	×	58	+	0.6	×	93	=	79,	 and	 against	 the	 goalie’s
Right	 it	 is	0.4	×	95	+	0.6	×	70	=	80.	The	goalie	 can	hold	you	down	 to	79	by
choosing	 his	 Left,	 but	 that	 is	 better	 than	 the	 75.5	 percent	 you	 could	 have
achieved	with	a	50:50	mix.

Observe	how	the	successively	better	mixture	proportions	for	 the	kicker	are
narrowing	the	difference	between	the	success	rates	against	the	goalie’s	Left	and
Right	choices:	from	the	93	to	70	difference	for	the	better	of	the	kicker’s	two	pure
strategies,	 to	 the	 82.5	 to	 75.5	 difference	 for	 the	 50:50	 mix,	 to	 the	 80	 to	 79
difference	for	the	40:60	mix.	It	should	be	intuitively	clear	that	your	best	mixture
proportion	achieves	the	same	rate	of	success	whether	the	goalie	chooses	his	Left
or	his	Right.	That	also	fits	with	the	intuition	that	mixing	moves	is	good	because
it	prevents	the	other	player	from	exploiting	any	systematic	choice	or	pattern	of
choices.

A	 little	 calculation,	 which	 we	 postpone	 to	 a	 later	 section	 of	 this	 chapter,
reveals	that	the	best	mixture	for	the	kicker	is	to	choose	his	Left	38.3	percent	of
the	time	and	his	Right	61.7	percent	of	the	time.	This	achieves	a	success	rate	of
0.383	×	58	+	0.617	×	93	=	79.6	percent	against	the	goalie’s	Left,	and	0.383	×	95
+	0.617	×	70	=79.6	percent	against	the	goalie’s	Right.

What	 about	 the	goalie’s	 strategy?	 If	 he	 chooses	 the	pure	 strategy	Left,	 the
kicker	can	achieve	93	percent	success	by	choosing	his	own	Right;	if	 the	goalie
chooses	 his	 pure	 strategy	Right,	 the	 kicker	 can	 achieve	 95	 percent	 success	 by
choosing	 his	 own	 Left.	 By	mixing,	 the	 goalie	 can	 hold	 the	 kicker	 down	 to	 a
much	 lower	 success	 rate.	The	best	mixture	 for	 the	goalie	 is	 one	 that	 gives	 the
kicker	the	same	success	rate	whether	he	chooses	to	kick	to	the	Left	or	the	Right.
It	turns	out	that	the	goalie	should	choose	the	proportions	of	his	Left	and	Right	at
41.7	 and	 58.3,	 respectively,	 and	 this	 gives	 the	 kicker	 a	 success	 rate	 of	 79.6
percent.

Notice	 one	 seeming	 coincidence:	 the	 success	 percentage	 the	 kicker	 can
ensure	 by	 choosing	 his	 best	mixture,	 namely	 79.6,	 is	 the	 same	 as	 the	 success



percentage	 to	which	 the	goalie	can	hold	down	 the	kicker	by	choosing	his	own
best	mixture.	Actually	this	is	no	coincidence;	it	is	an	important	general	property
of	mixed	strategy	equilibria	in	games	of	pure	conflict	(zero-sum	games).

This	result,	called	the	minimax	theorem,	is	due	to	Princeton	mathematician
and	 polymath	 John	 von	 Neumann.	 It	 was	 later	 elaborated	 by	 him,	 in
coauthorship	with	Princeton	economist	Oscar	Morgenstern,	in	their	classic	book
Theory	of	Games	and	Economic	Behavior,2	which	can	be	said	to	have	launched
the	whole	subject	of	game	theory.

The	theorem	states	that	in	zero-sum	games	in	which	the	players’	interests	are
strictly	 opposed	 (one’s	 gain	 is	 the	 other’s	 loss),	 one	 player	 should	 attempt	 to
minimize	 his	 opponent’s	 maximum	 payoff	 while	 his	 opponent	 attempts	 to
maximize	his	own	minimum	payoff.	When	they	do	so,	the	surprising	conclusion
is	that	the	minimum	of	the	maximum	(minimax)	payoffs	equals	the	maximum	of
the	minimum	(maximin)	payoffs.	The	general	proof	of	the	minimax	theorem	is
quite	 complicated,	 but	 the	 result	 is	 useful	 and	 worth	 remembering.	 If	 all	 you
want	to	know	is	 the	gain	of	one	player	or	the	loss	of	the	other	when	both	play
their	 best	 mixes,	 you	 need	 only	 compute	 the	 best	 mix	 for	 one	 of	 them	 and
determine	its	result.

Theory	and	Reality
	

How	close	is	the	performance	of	actual	kickers	and	goalies	to	our	theoretical
calculations	 about	 the	 respective	 best	 mixtures?	 The	 following	 table	 is
constructed	from	Palacios-Huerta’s	data	and	our	calculations.3

	
Pretty	good,	huh?	In	each	case,	the	actual	mixture	proportions	are	quite	close	to
the	best.	The	actual	mixtures	yield	almost	equal	success	rates	regardless	of	 the
other	player’s	choice	and	therefore	are	close	to	being	immune	to	exploitation	by
the	other.

Similar	 evidence	 of	 agreement	 between	 actual	 play	 and	 theoretical



predictions	 comes	 from	 top-level	 professional	 tennis	 matches.4	 This	 is	 to	 be
expected.	 The	 same	 people	 regularly	 play	 against	 one	 another	 and	 study	 their
opponents’	 methods;	 any	 reasonably	 obvious	 pattern	 would	 be	 noticed	 and
exploited.	And	the	stakes	are	large,	in	terms	of	money,	achievement,	and	fame;
therefore	the	players	have	strong	incentives	not	to	make	mistakes.

However,	the	success	of	game	theory	is	not	complete	or	universal.	Later	in
this	chapter	we	will	examine	how	well	or	poorly	the	theory	of	mixed	strategies
succeeds	 in	other	games	and	why.	First	 let	us	 summarize	 the	general	principle
expressed	here	in	the	form	of	a	rule	for	action:

RULE	 5:	 In	 a	 game	 of	 pure	 conflict	 (zero-sum	 game),	 if	 it	would	 be
disadvantageous	 for	you	 to	 let	 the	opponent	 see	your	actual	 choice	 in
advance,	then	you	benefit	by	choosing	at	random	from	your	available
pure	 strategies.	The	proportions	 in	 your	mix	 should	be	 such	 that	 the
opponent	cannot	exploit	your	choice	by	pursuing	any	particular	pure
strategy	 from	 the	 ones	 available	 to	 him—that	 is,	 you	 get	 the	 same
average	payoff	when	he	 plays	 any	 of	 his	 pure	 strategies	 against	 your
mixture.

	

When	one	player	follows	this	rule,	the	other	cannot	do	any	better	by	using	one	of
his	own	pure	 strategies	 than	another.	Therefore	he	 is	 indifferent	between	 them
and	cannot	do	any	better	than	to	use	the	mixture	prescribed	for	him	by	the	same
rule.	When	both	follow	the	rule,	then	neither	gets	any	better	payoff	by	deviating
from	this	behavior.	This	is	just	the	definition	of	Nash	equilibrium	from	chapter
4.	 In	 other	 words,	 what	 we	 have	 when	 both	 players	 use	 this	 rule	 is	 a	 Nash
equilibrium	 in	 mixed	 strategies.	 So,	 the	 von	 Neumann-Morgenstern	 minimax
theorem	can	be	regarded	as	a	special	case	of	 the	more	general	 theory	of	Nash.
The	 minimax	 theorem	 works	 only	 for	 two-player	 zero-sum	 games,	 while	 the
Nash	 equilibrium	 concept	 can	 be	 used	 with	 any	 number	 of	 players	 and	 any
mixture	of	conflict	and	common	interest	in	the	game.

Equilibria	 of	 zero-sum	 games	 don’t	 necessarily	 have	 to	 involve	 mixed
strategies.	As	a	simple	example,	suppose	 the	kicker	has	very	 low	success	rates
when	 kicking	 to	 the	 Left	 (his	 non-natural	 side)	 even	when	 the	 goalie	 guesses
wrong.	This	can	happen	because	there	is	a	significant	probability	that	the	kicker
will	 miss	 the	 target	 anyway	 when	 kicking	 with	 the	 outside	 of	 his	 foot.
Specifically,	suppose	the	payoff	table	is:



	
Then	the	strategy	Right	is	dominant	for	the	kicker,	and	there	is	no	reason	to	mix.
More	generally,	there	can	be	equilibria	in	pure	strategies	without	dominance.	But
this	 is	no	cause	 for	 concern;	 the	methods	 for	 finding	mixed	 strategy	equilibria
will	also	yield	such	pure	strategy	equilibria	as	special	cases	of	mixtures,	where
the	proportion	of	the	one	strategy	in	the	mixture	is	the	entire	100	percent.

CHILD’S	PLAY
	

On	October	23,	 2005,	Andrew	Bergel	 of	Toronto	was	 crowned	 that	 year’s
Rock	 Paper	 Scissors	 International	 World	 Champion	 and	 received	 the	 Gold
Medal	 of	 the	World	 RPS	 Society.	 Stan	 Long	 of	 Newark,	 California,	 won	 the
silver	medal,	and	Stewart	Waldman	of	New	York	the	bronze.

The	World	RPS	Society	maintains	a	web	site,	www.worldrps.com,	where	the
official	rules	of	play	and	various	guides	to	strategy	are	posted.	It	also	holds	an
annual	world	championship	event.	Did	you	know	that	the	game	you	played	as	a
child	has	become	this	big?

The	rules	of	the	game	are	the	same	as	the	ones	you	followed	as	a	kid	and	as
described	 in	 chapter	 1.	 Two	 players	 simultaneously	 choose	 (“throw,”	 in	 the
technical	jargon	of	the	game)	one	of	three	hand	signals:	Rock	is	a	fist,	Paper	is	a
horizontal	 flat	 palm,	 and	 Scissors	 is	 signified	 by	 holding	 out	 the	 index	 and
middle	fingers	at	an	angle	to	each	other	and	pointing	toward	the	opponent.	If	the
two	players	make	the	same	choice,	it	is	a	tie.	If	the	two	make	different	choices,
Rock	 wins	 against	 (breaks)	 Scissors,	 Scissors	 wins	 against	 (cuts)	 Paper,	 and
Paper	wins	against	(covers)	Rock.	Each	pair	plays	many	times	in	succession,	and
the	winner	of	a	majority	of	these	plays	is	the	winner	of	that	match.

The	elaborate	rules	set	out	on	the	web	page	of	the	World	RPS	Society	ensure
two	things.	First,	 they	describe	in	precise	 terms	the	hand	shapes	that	constitute
each	 type	 of	 throw;	 this	 prevents	 any	 attempts	 at	 cheating,	 where	 one	 player
makes	some	ambiguous	gesture,	which	he	 later	claims	 to	be	 the	one	 that	beats
what	his	opponent	chose.	Second,	they	describe	a	sequence	of	actions,	called	the



prime,	 the	approach,	 and	 the	delivery,	 intended	 to	ensure	 that	 the	 two	players’
moves	are	simultaneous;	 this	prevents	one	player	 from	seeing	 in	advance	what
the	other	has	done	and	making	the	winning	response	to	it.

Thus	 we	 have	 a	 two-player	 simultaneous-move	 game	 with	 three	 pure
strategies	 for	 each.	 If	 a	win	 counts	 as	 1	 point,	 a	 loss	 as–1,	 and	 a	 tie	 as	 0,	 the
game	table	is	as	follows,	with	the	players	named	Andrew	and	Stan	in	honor	of
their	achievements	in	the	2005	World	Championships:

	
What	would	game	theory	recommend?	This	 is	a	zero-sum	game,	and	revealing
your	move	in	advance	can	be	disadvantageous.	If	Andrew	chooses	just	one	pure
move,	 Stan	 can	 always	 make	 a	 winning	 response	 and	 hold	 Andrew’s	 payoff
down	to–1.	If	Andrew	mixes	the	three	moves	in	equal	proportions	of	1/3	each,	it
gives	him	the	average	payoff	of	(1/3)	×	1	+	(1/3)	×	0	+	(1/3)	×	(–1)	=	0	against
any	one	of	Stan’s	pure	strategies.	With	the	symmetric	structure	of	the	game,	this
is	 quite	 obviously	 the	 best	 that	 Andrew	 can	 do,	 and	 calculation	 confirms	 this
intuition.	The	same	argument	goes	for	Stan.	Therefore	mixing	all	three	strategies
in	 equal	 proportions	 is	 best	 for	 both	 and	 yields	 a	 Nash	 equilibrium	 in	 mixed
strategies.

However,	 this	 is	not	how	most	participants	 in	 the	championships	play.	The
web	site	labels	this	the	Chaos	Play	and	advises	against	it.	“Critics	of	this	strategy
insist	that	there	is	no	such	thing	as	a	random	throw.	Human	beings	will	always
use	some	impulse	or	inclination	to	choose	a	throw,	and	will	therefore	settle	into
unconscious	 but	 nonetheless	 predictable	 patterns.	 The	 Chaos	 School	 has	 been
dwindling	in	recent	years	as	tournament	statistics	show	the	greater	effectiveness
of	other	strategies.”

The	 problem	 of	 “settling	 into	 unconscious	 but	 nonetheless	 predictable
patterns”	is	indeed	a	serious	one	deserving	further	discussion,	to	which	we	will
turn	 in	 a	moment.	But	 first	 let	 us	 see	what	 kinds	 of	 strategies	 are	 favored	 by
participants	in	the	World	RPS	Championship.



The	 web	 site	 lists	 several	 “gambits,”	 like	 the	 cleverly	 named	 strategy
Bureaucrat,	 which	 consists	 of	 three	 successive	 throws	 of	 Paper,	 or	 Scissor
Sandwich,	 which	 consists	 of	 Paper,	 Scissors,	 Paper.	 Another	 is	 the	 Exclusion
Strategy,	 which	 leaves	 out	 one	 of	 the	 throws.	 The	 idea	 behind	 these	 is	 that
opponents	 will	 focus	 their	 entire	 strategy	 on	 predicting	 when	 the	 pattern	 will
change,	 or	 when	 the	 missing	 throw	 will	 appear,	 and	 you	 can	 exploit	 this
weakness	in	their	reasoning.

There	are	also	physical	skills	of	deception,	and	detection	of	the	opponent’s
deception.	The	players	watch	each	other’s	body	language	and	hands	for	signals
of	what	they	are	about	to	throw;	they	also	try	to	deceive	the	opponent	by	acting
in	a	way	 that	 suggests	one	 throw	and	choosing	a	different	one	 instead.	Soccer
penalty	 kickers	 and	 goalies	 similarly	 watch	 each	 other’s	 legs	 and	 body
movements	 to	 guess	 which	 way	 the	 other	 will	 go.	 Such	 skills	 matter;	 for
example,	in	the	penalty	shoot-out	that	decided	the	2006	World	Cup	quarter-final
match	 between	England	 and	Portugal,	 the	 Portuguese	 goalie	 guessed	 correctly
every	time	and	saved	three	of	the	kicks,	which	clinched	the	victory	for	his	team.

MIXING	IT	UP	IN	THE	LABORATORY
	

By	 contrast	 with	 the	 remarkable	 agreement	 between	 theory	 and	 reality	 of
mixed	 strategies	 on	 the	 soccer	 field	 and	 the	 tennis	 court,	 the	 evidence	 from
laboratory	 experiments	 is	 mixed	 or	 even	 negative.	 The	 first	 book-length
treatment	 of	 experimental	 economics	 declared	 flatly:	 “Subjects	 in	 experiments
are	rarely	(if	ever)	observed	flipping	coins.”5	What	explains	this	difference?

Some	of	the	reasons	are	the	same	as	those	discussed	in	chapter	4	when	we
contrasted	the	two	kinds	of	empirical	evidence.	The	laboratory	setting	involves
somewhat	artificially	structured	games	played	by	novice	subjects	 for	 relatively
small	 stakes,	 whereas	 the	 field	 setting	 has	 experienced	 players	 engaged	 in
familiar	games,	for	stakes	that	are	huge	in	terms	of	fame	and	prestige	and	often
also	in	terms	of	money.

Another	 limitation	 of	 the	 experimental	 setting	 may	 be	 at	 work.	 The
experiments	always	begin	with	a	session	where	the	rules	are	carefully	explained,
and	the	experimenters	go	to	great	lengths	to	ensure	that	the	subjects	understand
the	rules.	The	rules	make	no	explicit	mention	of	the	possibility	of	randomization
and	don’t	provide	coins	or	dice	or	the	instruction,	“You	are	allowed,	if	you	wish,
to	flip	the	coins	or	roll	the	dice	to	decide	what	you	are	going	to	do.”	Then	it	is
hardly	 surprising	 that	 the	 subjects,	 instructed	 to	 follow	 the	 rules	 precisely	 as
stated,	don’t	flip	coins.	We	have	known	ever	since	Stanley	Milgram’s	renowned



experiment	that	subjects	treat	experimenters	as	authority	figures	to	be	obeyed.6	It
is	 hardly	 surprising	 that	 they	 follow	 the	 rules	 literally	 and	 do	 not	 think	 of
randomizing.

However,	 the	 fact	 remains	 that	 even	 when	 the	 laboratory	 games	 were
structured	to	be	similar	to	soccer	penalty	kicks,	where	the	value	of	mixing	moves
is	evident,	the	subjects	do	not	seem	to	have	used	randomization	either	correctly
or	appropriately	over	time.7

Thus	we	have	a	mixed	record	of	success	and	failure	for	the	theory	of	mixed
strategies.	 Let	 us	 develop	 some	 of	 these	 findings	 a	 little	 further,	 both	 to
understand	what	we	should	expect	in	games	we	observe	and	to	learn	how	to	play
better.

HOW	TO	ACT	RANDOMLY
	

Randomization	does	not	mean	alternating	between	 the	pure	 strategies.	 If	 a
pitcher	is	told	to	mix	fastballs	and	forkballs	in	equal	proportions,	he	should	not
throw	a	fastball,	then	a	forkball,	then	a	fastball	again,	and	so	on	in	strict	rotation.
The	 batters	 will	 quickly	 notice	 the	 pattern	 and	 exploit	 it.	 Similarly,	 if	 the
proportion	of	fastballs	 to	forkballs	 is	 to	be	60:40,	 that	does	not	mean	throwing
six	fastballs	followed	by	four	forkballs	and	so	on.

What	should	the	pitcher	do	when	mixing	fastballs	and	forkballs	randomly	in
equal	proportions?	One	way	is	to	pick	a	number	at	random	between	1	and	10.	If
the	number	is	5	or	less,	throw	a	fastball;	if	the	number	is	6	or	above,	go	for	the
forkball.	 Of	 course,	 this	 only	 reduces	 the	 problem	 one	 layer.	 How	 do	 you	 go
about	picking	a	random	number	between	1	and	10?

Let	us	start	with	the	simpler	problem	of	trying	to	write	down	what	a	random
sequence	 of	 coin	 tosses	 will	 look	 like.	 If	 the	 sequence	 is	 truly	 random,	 then
anyone	who	tries	to	guess	what	you	write	down	will	be	correct	no	more	than	50
percent	 on	 average.	 But	 writing	 down	 such	 a	 “random”	 sequence	 is	 more
difficult	than	you	might	imagine.

Psychologists	 have	 found	 that	 people	 tend	 to	 forget	 that	 heads	 is	 just	 as
likely	 to	 be	 followed	 by	 heads	 as	 by	 tails;	 therefore	 they	 have	 too	 many
reversals,	and	too	few	strings	of	heads,	in	their	successive	guesses.	If	a	fair	coin
toss	comes	up	heads	thirty	times	in	a	row,	the	next	toss	is	still	equally	likely	to
be	heads	or	tails.	There	is	no	such	thing	as	“being	due”	for	tails.	Similarly,	in	the
lottery,	last	week’s	number	is	just	as	likely	to	win	again	as	any	other	number.

The	knowledge	that	people	fall	into	the	error	of	too	many	reversals	explains
many	 of	 the	 stratagems	 and	 gambits	 used	 by	 participants	 in	 the	 World	 RPS



Championships.	Players	attempt	to	exploit	this	weakness	and,	at	the	next	higher
level,	 attempt	 to	 exploit	 these	 attempts	 in	 turn.	 The	 player	 who	 throws	 Paper
thrice	 in	 succession	 is	 looking	 for	 the	opponent	 to	 think	 that	 a	 fourth	Paper	 is
unlikely,	and	the	player	who	leaves	out	one	of	the	throws	and	mixes	among	just
the	 other	 two	 in	 many	 successive	 plays	 is	 trying	 to	 exploit	 the	 opponent’s
thinking	that	the	missing	throw	is	“due.”

To	avoid	getting	caught	putting	order	into	the	randomness,	you	need	a	more
objective	 or	 independent	 mechanism.	 One	 such	 trick	 is	 to	 choose	 some	 fixed
rule,	but	one	that	is	both	secret	and	sufficiently	complicated	that	it	is	difficult	to
discover.	Look,	for	example,	at	 the	length	of	our	sentences.	If	 the	sentence	has
an	odd	number	of	words,	call	it	heads;	if	the	sentence	length	is	even,	call	it	tails.
That	 should	 be	 a	 good	 random	number	 generator.	Working	backward	over	 the
previous	 ten	 sentences	 yields	 T,	H,	H,	 T,	H,	H,	H,	H,	 T,	 T.	 If	 our	 book	 isn’t
handy,	 don’t	worry;	we	 carry	 random	 number	 sequences	with	 us	 all	 the	 time.
Take	a	succession	of	your	friends’	and	relatives’	birthdates.	For	even	dates,	guess
heads;	for	odd,	tails.	Or	look	at	the	second	hand	on	your	watch.	Provided	your
watch	 is	 not	 too	 accurate,	 no	 one	 else	 will	 know	 the	 current	 position	 of	 the
second	hand.	Our	advice	to	the	pitcher	who	must	mix	in	proportions	of	50:50	or
to	the	catcher	who	is	calling	the	pitches	is	to	glance	at	his	wristwatch	just	before
each	 pitch.	 If	 the	 second	 hand	 points	 toward	 an	 even	 number,	 then	 throw	 a
fastball;	an	odd	number,	then	throw	a	forkball.	The	second	hand	can	be	used	to
achieve	 any	 ratio.	 To	 throw	 fastballs	 40	 percent	 of	 the	 time	 and	 forkballs	 60
percent,	choose	fastball	if	the	second	hand	is	between	1	and	24,	and	forkball	if	it
is	between	25	and	60.

Just	how	successful	were	the	top	professionals	in	tennis	and	soccer	at	correct
randomization?	 The	 analysis	 of	 data	 in	 grand	 slam	 tennis	 finals	 revealed	 that
there	was	indeed	some	tendency	to	reverse	between	serves	to	the	forehand	and
the	 backhand	 more	 frequently	 than	 appropriate	 for	 true	 randomness;	 in	 the
jargon	 of	 statistics,	 there	was	 negative	 serial	 correlation.	But	 it	 seems	 to	 have
been	too	weak	to	be	successfully	picked	up	and	exploited	by	the	opponents,	as
seen	 from	 the	 statistically	 insignificant	 difference	 of	 success	 rates	 of	 the	 two
kinds	of	serves.	In	the	case	of	soccer	penalty	kicks,	the	randomization	was	close
to	 being	 correct;	 the	 incidence	 of	 reversals	 (negative	 serial	 correlation)	 was
statistically	insignificant.	This	is	understandable;	successive	penalty	kicks	taken
by	the	same	player	come	several	weeks	apart,	so	the	tendency	to	reverse	is	likely
to	be	less	pronounced.

The	championship-level	players	of	Rock	Paper	Scissors	seem	to	place	a	lot
of	importance	on	strategies	that	deliberately	depart	from	randomization,	and	try
to	 exploit	 the	 other	 player’s	 attempts	 to	 interpret	 patterns.	How	 successful	 are



these	attempts?	One	kind	of	evidence	would	come	from	consistency	of	success.
If	 some	 players	 are	 better	 at	 deploying	 nonrandom	 strategies,	 they	 should	 do
well	 in	 contest	 after	 contest,	 year	 after	 year.	The	World	RPS	Society	does	not
“have	the	manpower	to	record	how	each	competitor	does	at	the	Championships
and	 the	sport	 is	not	developed	enough	so	 that	others	 track	 the	 info.	 In	general,
there	have	not	been	too	many	consistent	players	in	a	statistically	significant	way,
but	 the	 Silver	 medalist	 from	 2003	 made	 it	 back	 to	 the	 final	 8	 the	 following
year.”8	 This	 suggests	 that	 the	 elaborate	 strategies	 do	 not	 give	 any	 persistent
advantage.

Why	not	rely	on	the	other	player’s	randomization?	If	one	player	is	using	his
best	mix,	then	his	success	percentage	is	the	same	no	matter	what	the	other	does.
Suppose	you	are	the	kicker	in	the	soccer	example,	and	the	goalie	is	using	his	best
mix:	Left	41.7	percent	and	Right	58.3	percent	of	the	time.	Then	you	will	score	a
goal	 79.6	 percent	 of	 the	 time	whether	 you	 kick	 to	 the	 Left,	 the	Right,	 or	 any
mixture	of	the	two.	Observing	this,	you	might	be	tempted	to	spare	yourself	the
calculation	of	your	own	best	mix,	 just	 stick	 to	any	one	action,	and	 rely	on	 the
other	 player	 using	 his	 best	mix.	The	 problem	 is	 that	 unless	 you	 use	 your	 best
mix,	the	other	does	not	have	the	incentive	to	go	on	using	his.	If	you	stick	to	the
Left,	 for	 example,	 the	goalie	will	 switch	 to	covering	 the	Left	 also.	The	 reason
why	you	should	use	your	best	mix	is	to	keep	the	other	player	using	his.

Unique	Situations
	

All	of	this	reasoning	makes	sense	in	games	like	football,	baseball,	or	tennis,
in	which	the	same	situation	arises	many	times	in	one	game,	and	the	same	players
confront	 each	 other	 from	 one	 game	 to	 the	 next.	 Then	 there	 is	 time	 and
opportunity	 to	 observe	 any	 systematic	 behavior	 and	 respond	 to	 it.
Correspondingly,	it	is	important	to	avoid	patterns	that	can	be	exploited	and	stick
to	the	best	mix.	But	what	about	games	that	are	played	just	once?

Consider	 the	 choices	 of	 points	 of	 attack	 and	 defense	 in	 a	 battle.	Here	 the
situation	is	usually	unique,	and	the	other	side	cannot	infer	any	systematic	pattern
from	 your	 previous	 actions.	 But	 a	 case	 for	 random	 choice	 arises	 from	 the
possibility	of	espionage.	If	you	choose	a	definite	course	of	action,	and	the	enemy
discovers	what	you	are	going	 to	do,	he	will	 adapt	his	course	of	action	 to	your
maximum	disadvantage.	You	want	to	surprise	the	enemy;	the	surest	way	to	do	so
is	 to	surprise	yourself.	You	should	keep	your	options	open	as	 long	as	possible,
and	at	the	last	moment	choose	between	them	by	an	unpredictable	and,	therefore,
espionage-proof	 device.	 The	 relative	 proportions	 of	 the	 device	 should	 also	 be



such	 that	 if	 the	 enemy	 discovered	 them,	 he	 would	 not	 be	 able	 to	 turn	 the
knowledge	 to	 his	 advantage.	 This	 is	 just	 the	 best	 mix	 calculated	 in	 the
description	above.

Finally,	 a	warning.	Even	when	 you	 are	 using	 your	 best	mix,	 there	will	 be
occasions	when	you	have	a	poor	outcome.	Even	 if	 the	kicker	 is	unpredictable,
sometimes	the	goalie	will	still	guess	right	and	save	the	shot.	In	football,	on	third
down	 and	 a	 yard	 to	 go,	 a	 run	 up	 the	middle	 is	 the	 percentage	 play;	 but	 it	 is
important	to	throw	an	occasional	bomb	to	keep	the	defense	honest.	When	such	a
pass	succeeds,	fans	and	sportscasters	will	marvel	at	 the	cunning	choice	of	play
and	say	the	coach	is	a	genius.	When	it	fails,	the	coach	will	come	in	for	a	lot	of
criticism:	 how	 could	 he	 gamble	 on	 a	 long	 pass	 instead	 of	 going	 for	 the
percentage	play?

The	 time	 to	 justify	 the	coach’s	strategy	 is	before	using	 it	on	any	particular
occasion.	The	coach	should	publicize	the	fact	that	mixing	is	vital;	that	the	run	up
the	 middle	 remains	 such	 a	 good	 percentage	 play	 precisely	 because	 some
defensive	 resources	 must	 be	 diverted	 to	 guard	 against	 the	 occasional	 costly
bomb.	However,	we	suspect	that	even	if	the	coach	shouts	this	message	in	every
newspaper	and	on	every	TV	channel	before	the	game,	and	then	uses	a	bomb	in
such	a	situation	and	it	 fails,	he	will	come	in	for	 just	as	much	criticism	as	 if	he
had	not	tried	to	educate	the	public	in	the	elements	of	game	theory.

MIXING	STRATEGIES	IN	MIXED-MOTIVES	GAMES
	

In	this	chapter	thus	far,	we	have	considered	only	games	where	the	players’
motives	 are	 in	 pure	 conflict,	 that	 is,	 zero-sum	or	 constant-sum	games.	But	we
have	 always	 emphasized	 that	 most	 games	 in	 reality	 have	 aspects	 of	 common
interests	as	well	as	conflict.	Does	mixing	have	a	role	in	these	more	general	non-
zero-sum	games?	Yes,	but	with	qualifications.

To	illustrate	this,	let	us	consider	the	hunting	version	of	the	battle	of	the	sexes
game	from	chapter	4.	Remember	our	intrepid	hunters	Fred	and	Barney,	who	are
deciding	separately,	each	 in	his	own	cave,	whether	 to	go	stag	hunting	or	bison
hunting	that	day.	A	successful	hunt	requires	effort	from	both,	so	if	the	two	make
opposite	 choices,	 neither	 gets	 any	 meat.	 They	 have	 a	 common	 interest	 in
avoiding	such	outcomes.	But	between	the	two	successful	possibilities	where	they
are	in	the	same	hunting	ground,	Fred	prefers	stag	meat	and	rates	the	outcome	of
a	 jointly	 conducted	 stag	 hunt	 4	 instead	 of	 3,	 while	 Barney	 has	 the	 opposite
preferences.	Therefore	the	game	table	is	as	shown	below.



	
We	saw	 that	 the	game	has	 two	Nash	equilibria,	 shown	shaded.	We	would	now
call	these	equilibria	in	pure	strategies.	Can	there	be	equilibria	with	mixing?

Why	would	Fred	choose	a	mixture?	Perhaps	he	is	uncertain	about	Barney’s
choice.	If	Fred’s	subjective	uncertainty	is	such	that	he	thinks	the	probabilities	of
Barney	choosing	Stag	and	Bison	are	y	and	(1–y),	 respectively,	 then	he	expects
the	payoff	of	4y	+	0(1–y)	=	4y	if	he	himself	chooses	Stag,	and	0y	+	3(1–y)	if	he
himself	chooses	Bison.	If	y	is	such	that	4y	=	3(1–y),	or	3	=	7y,	or	y	=	3/7,	then
Fred	 gets	 the	 same	 payoff	 whether	 he	 chooses	 Stag	 or	 Bison,	 and	 also	 if	 he
chooses	 to	mix	 between	 the	 two	 in	 any	 proportions	 at	 all.	But	 suppose	Fred’s
mixture	 of	 Stag	 and	Bison	 is	 such	 that	Barney	 is	 indifferent	 between	 his	 pure
strategies.	 (This	game	is	very	symmetric,	so	you	can	guess,	and	also	calculate,
that	this	means	Fred	choosing	Stag	a	fraction	x	=	4/7	of	the	time.)	Then	Barney
could	 be	 mixing	 in	 just	 the	 right	 proportions	 to	 keep	 Fred	 indifferent,	 and
therefore	willing	to	choose	just	the	right	mixture	of	his	own.	The	two	mixtures	x
=	4/7	and	y	=	3/7	constitute	a	Nash	equilibrium	in	mixed	strategies.

Is	such	an	equilibrium	satisfactory	in	any	way?	No.	The	problem	is	that	the
two	 are	making	 these	 choices	 independently.	 Therefore	 Fred	will	 choose	 Stag
when	Barney	is	choosing	Bison	(4/7)	×	(4/7)	=	16/49	of	the	time,	and	the	other
way	around	(3/7)	×	(3/7)	=	9/49	of	the	time.	Thus	in	25/49	or	just	over	half	of
the	 times	 the	 two	will	 find	 themselves	 in	separate	places	and	get	zero	payoffs.
Using	the	formulas	in	our	calculation,	we	see	that	each	gets	the	payoff	4	×	(3/7)
+	 0	 ×	 (4/7)	 =	 12/7	 =	 1.71,	 which	 is	 less	 than	 the	 3	 of	 the	 unfavorable	 pure
strategy	equilibrium.

To	avoid	such	errors,	what	they	need	is	coordinated	mixing.	Can	they	do	this
while	 they	 are	 in	 their	 separate	 caves	 with	 no	 immediate	 means	 of
communication?	 Perhaps	 they	 can	 make	 an	 agreement	 in	 advance	 based	 on
something	they	know	they	are	both	going	to	observe	as	they	set	out.	Suppose	in
their	 area	 there	 is	 a	 morning	 shower	 on	 half	 of	 the	 days.	 They	 can	 make	 an
agreement	that	they	both	will	go	stag	hunting	if	it	is	raining	and	bison	hunting	if
it	is	dry.	Then	each	will	get	an	average	payoff	of	1/2	×	3	+	1/2	×	4	=	3.5.	Thus
coordinated	randomization	provides	them	with	a	neat	way	to	split	the	difference



between	 the	 favored	 and	 unfavored	 pure	 strategy	Nash	 equilibria,	 that	 is,	 as	 a
negotiation	device.

The	 uncoordinated	Nash	 equilibrium	 in	mixed	 strategies	 not	 only	 has	 low
payoff,	but	it	is	also	fragile	or	unstable.	If	Fred’s	estimate	of	Barney’s	choosing
Stag	 tips	 ever	 so	 slightly	 above	 3/7	=0.42857,	 say	 to	 0.43,	 then	Fred’s	 payoff
from	his	own	Stag,	namely	4	×	0.43	+	0	×	0.57	=	1.72,	exceeds	 that	 from	his
own	Bison,	namely	0	×	0.43	+	3	×	0.57	=	1.71.	Therefore	Fred	no	longer	mixes
but	 chooses	 pure	Stag	 instead.	Then	Barney’s	 best	 response	 is	 also	 pure	Stag,
and	the	mixed	strategy	equilibrium	breaks	down.

Finally,	the	mixed	strategy	equilibrium	has	a	strange	and	unintuitive	feature.
Suppose	we	change	Barney’s	payoffs	to	6	and	7	instead	of	3	and	4,	respectively,
leaving	 Fred’s	 payoff	 numbers	 unchanged.	What	 does	 that	 do	 to	 the	 mixture
proportions?	 Again	 write	 y	 for	 the	 fraction	 of	 the	 time	 Barney	 is	 thought	 to
choose	Stag.	Then	Fred	still	gets	4y	from	his	own	choice	of	pure	Stag	and	3(1–y)
from	his	own	choice	of	pure	Bison,	 leading	to	y	=	3/7	to	keep	Fred	indifferent
and	 therefore	willing	 to	mix.	However,	writing	x	 for	 the	proportion	of	Stag	 in
Fred’s	mixture,	Barney	gets	6x	+	0(1–x)	=	6x	from	his	own	pure	Stag	and	0x	+
7(1–x)	=	7(1–x)	from	his	own	pure	Bison.	Equating	the	two,	we	have	x	=	7/13.
Thus	 the	 change	 in	 Barney’s	 payoffs	 leaves	 his	 own	 equilibrium	 mixture
unaffected,	but	changes	Fred’s	equilibrium	mixture	proportions!

On	 further	 reflection,	 this	 is	not	 so	 strange.	Barney	may	be	willing	 to	mix
only	because	he	is	unsure	about	what	Fred	is	doing.	So	the	calculation	involves
Barney’s	 payoffs	 and	 Fred’s	 choice	 probabilities.	 If	 we	 set	 the	 resulting
expressions	 equal	 and	 solve,	 we	 see	 that	 Fred’s	 mixture	 probabilities	 are
“determined	by”	Barney’s	payoffs.	And	vice	versa.

However,	this	reasoning	is	so	subtle,	and	at	first	sight	so	strange,	that	most
players	 in	 experimental	 situations	 fail	 to	 figure	 it	 out	 even	when	 prompted	 to
randomize.	 They	 change	 their	 mixture	 probabilities	 when	 their	 own	 payoffs
change,	not	when	the	other	player’s	payoffs	change.

MIXING	IN	BUSINESS	AND	OTHER	WARS
	

Our	examples	of	the	use	of	mixed	strategies	came	from	the	sporting	world.
Why	are	there	so	few	instances	of	randomized	behavior	out	in	the	“real”	worlds
of	business,	politics,	or	war?	First,	most	of	those	games	are	non-zero-sum,	and
we	saw	that	the	role	of	mixing	in	those	situations	is	more	limited	and	fragile,	and
not	necessarily	conducive	to	good	outcomes.	But	other	reasons	also	exist.

It	may	be	difficult	to	build	in	the	idea	of	leaving	the	outcome	to	chance	in	a



corporate	 culture	 that	 wants	 to	 maintain	 control	 over	 the	 outcome.	 This	 is
especially	true	when	things	go	wrong,	as	they	must	occasionally	when	moves	are
chosen	randomly.	While	 (some)	people	understand	 that	a	 football	coach	has	 to
fake	a	punt	once	in	a	while	in	order	to	keep	the	defense	honest,	a	similarly	risky
strategy	in	business	can	get	you	fired	if	it	fails.	But	the	point	isn’t	that	the	risky
strategy	will	always	work,	but	rather	that	it	avoids	the	danger	of	set	patterns	and
predictability.

One	application	in	which	mixed	strategies	improve	business	performance	is
price	discount	coupons.	Companies	use	these	to	build	market	share.	The	idea	is
to	 attract	 new	 customers	 without	 giving	 the	 same	 discount	 to	 your	 existing
market.	If	competitors	simultaneously	offer	coupons,	then	customers	don’t	have
any	special	incentive	to	switch	brands.	Instead,	they	stay	with	their	current	brand
and	take	the	discount.	Only	when	one	company	offers	coupons	while	the	others
don’t	are	new	customers	attracted	to	try	the	product.

The	 price	 coupon	 game	 for	 competitors	 such	 as	 Coke	 and	 Pepsi	 is	 then
analogous	to	the	coordination	problem	of	the	hunters.	Each	company	wants	to	be
the	only	one	to	give	coupons,	just	as	Fred	and	Barney	each	want	to	choose	his
own	favored	hunting	ground.	But	if	they	try	to	do	this	simultaneously,	the	effects
cancel	out	and	both	are	worse	off.	One	solution	would	be	to	follow	a	predictable
pattern	of	offering	coupons	every	six	months,	and	the	competitors	could	learn	to
alternate.	The	 problem	with	 this	 approach	 is	 that	when	Coke	 predicts	 Pepsi	 is
just	about	to	offer	coupons,	Coke	should	step	in	first	to	preempt.	The	only	way
to	avoid	preemption	is	to	keep	the	element	of	surprise	that	comes	from	using	a
randomized	strategy.

Of	course,	independent	randomization	runs	the	risk	of	“mistakes”	exactly	as
in	our	story	of	the	Stone	Age	hunters	Fred	and	Barney.	Competitors	can	do	much
better	by	cooperating	 instead,	and	 there	 is	strong	statistical	evidence	 that	Coke
and	 Pepsi	 reached	 just	 such	 a	 cooperative	 solution.	 There	 was	 a	 span	 of	 52
weeks	 in	which	 Coke	 and	 Pepsi	 each	 offered	 price	 promotions	 for	 26	weeks,
without	any	overlap.	If	each	was	choosing	to	run	a	promotion	in	any	one	week	at
random	with	a	50	percent	chance,	and	choosing	this	independently	of	the	other,
the	chance	of	there	being	zero	overlaps	is	1/495918532948104,	or	less	than	1	in
a	quadrillion	(a	billion	billion)!	This	was	such	a	startling	finding	that	it	made	its
way	to	the	media,	including	the	CBS	program	60	Minutes.9

The	purpose	of	the	coupons	is	to	expand	market	share.	But	each	firm	realizes
that	 to	be	 successful,	 it	 has	 to	offer	promotions	when	 the	other	 is	not	offering
similar	 promotions.	 The	 strategy	 of	 randomly	 choosing	 weeks	 for	 promotion
offers	may	 have	 the	 intention	 of	 catching	 the	 other	 off-guard.	 But	 when	 both
firms	 are	 following	 similar	 strategies,	 there	 are	 many	 weeks	 when	 both	 offer



promotions.	 In	 those	weeks	 their	campaigns	will	merely	cancel	each	other	out;
neither	firm	increases	its	share	and	both	make	a	lower	profit.	The	strategies	thus
create	 a	 prisoners’	 dilemma.	 The	 firms,	 being	 in	 an	 ongoing	 relationship,
recognize	that	both	can	do	better	by	resolving	the	dilemma.	The	way	to	do	this	is
for	 each	company	 to	 take	a	 turn	at	having	 the	 lowest	price,	 and	 then	once	 the
promotion	 ends,	 everyone	 goes	 back	 to	 their	 regular	 brands.	That	 is	 just	what
they	did.

There	 are	 other	 cases	 in	 which	 businesses	 must	 avoid	 set	 patterns	 and
predictability.	Some	airlines	offer	discount	tickets	to	travelers	who	are	willing	to
buy	tickets	at	the	last	minute.	But	they	won’t	tell	you	how	many	seats	are	left	in
order	 to	 help	 you	 estimate	 the	 chances	 of	 success.	 If	 last-minute	 ticket
availability	 were	 more	 predictable,	 then	 there	 would	 be	 a	 much	 greater
possibility	 of	 exploiting	 the	 system,	 and	 the	 airlines	would	 lose	more	 of	 their
otherwise	regular	paying	customers.

The	most	widespread	use	of	randomized	strategies	in	business	is	to	motivate
compliance	 at	 a	 lower	 monitoring	 cost.	 This	 applies	 to	 everything	 from	 tax
audits	 to	 drug	 testing	 to	 parking	meters.	 It	 also	 explains	 why	 the	 punishment
should	not	necessarily	fit	the	crime.

The	typical	fine	for	illegal	parking	at	a	meter	is	many	times	the	meter	fee.	If
the	meter	rate	is	a	dollar	per	hour,	would	a	fine	of	$1.01	suffice	to	keep	people
honest?	 It	would,	provided	 the	 traffic	police	were	 sure	 to	 catch	you	each	 time
you	 parked	 without	 putting	 money	 in	 the	 meter.	 Such	 enforcement	 would	 be
very	costly.	The	salaries	of	the	traffic	wardens	would	be	the	largest	item,	but	the
cost	 of	 administering	 the	 collection	 mechanism	 needed	 to	 keep	 the	 policy
credible	would	be	quite	substantial,	too.

Instead,	 the	 authorities	 use	 an	 equally	 effective	 and	 less	 costly	 strategy,
namely	to	have	larger	fines	and	relax	the	enforcement	efforts.	When	the	fine	is
$25,	a	1	in	25	risk	of	being	caught	is	enough	to	keep	you	honest.	A	much	smaller
police	force	will	do	the	job,	and	the	fines	collected	will	come	closer	to	covering
the	administrative	costs.

This	is	another	instance	of	the	usefulness	of	mixed	strategies.	It	is	similar	to
the	 soccer	 example	 in	 some	ways,	 and	different	 in	other	 respects.	Once	 again,
the	authorities	choose	a	random	strategy	because	it	is	better	than	any	systematic
action:	no	enforcement	at	all	would	mean	misuse	of	scarce	parking	places,	and	a
100	 percent	 enforcement	 would	 be	 too	 costly.	 However,	 the	 other	 side,	 the
parking	 public,	 does	 not	 necessarily	 have	 a	 random	 strategy.	 In	 fact	 the
authorities	want	to	make	the	enforcement	probability	and	the	fine	large	enough
to	induce	the	public	to	comply	with	the	parking	regulations.

Random	 drug	 testing	 has	 many	 of	 the	 same	 features	 as	 parking	 meter



enforcement.	 It	 is	 too	 time-consuming	and	costly	 to	 test	every	employee	every
day	for	evidence	of	drug	use.	It	is	also	unnecessary.	Random	testing	will	uncover
those	who	are	unable	to	work	drug	free	and	discourage	others	from	recreational
use.	 Again,	 the	 probability	 of	 detection	 is	 small,	 but	 the	 fine	 when	 caught	 is
high.	This	is	one	of	the	problems	with	the	IRS	audit	strategy.	The	penalties	are
small	given	the	chances	of	getting	caught.	When	enforcement	is	random,	it	must
be	 that	 the	 punishment	 is	 worse	 than	 the	 crime.	 The	 rule	 should	 be	 that	 the
expected	punishment	should	fit	the	crime,	where	expectation	is	in	the	statistical
sense,	taking	into	account	the	chance	of	being	caught.

Those	hoping	to	defeat	enforcement	can	also	use	random	strategies	to	their
benefit.	 They	 can	 hide	 the	 true	 crime	 in	 the	 midst	 of	 many	 false	 alarms	 or
decoys,	and	the	enforcer’s	resources	become	spread	too	thin	to	be	effective.	For
example,	 an	 air	 defense	 must	 be	 able	 to	 destroy	 nearly	 100	 percent	 of	 all
incoming	missiles.	A	 cost-effective	way	of	 defeating	 the	 air	 defense	 is	 for	 the
attacker	 to	 surround	 the	 real	 missile	 with	 a	 bodyguard	 of	 decoys.	 It	 is	 much
cheaper	 to	 build	 a	 decoy	missile	 than	 the	 real	 thing.	 Unless	 the	 defender	 can
perfectly	 distinguish	 among	 them,	 he	 will	 be	 required	 to	 stop	 all	 incoming
missiles,	real	and	fake.

The	 practice	 of	 shooting	 dud	 shells	 began	 in	 World	 War	 II,	 not	 by	 the
intentional	design	of	building	decoy	missiles,	but	as	a	response	to	the	problem	of
quality	control.	“The	elimination	of	defective	shells	in	production	is	expensive.
Someone	 got	 the	 idea	 then	 of	 manufacturing	 duds	 and	 shooting	 them	 on	 a
random	basis.	A	military	commander	cannot	afford	to	have	a	delayed	time	bomb
buried	under	his	position,	and	he	never	knew	which	was	which.	The	bluff	made
him	work	at	every	unexploded	shell	that	came	over.”10

When	the	cost	of	defense	is	proportional	to	the	number	of	missiles	that	must
be	 shot	down,	attackers	can	make	 this	 enforcement	cost	unbearably	high.	This
problem	is	one	of	the	major	challenges	in	the	design	of	the	Star	Wars	defense;	it
may	have	no	solution.

HOW	TO	FIND	MIXED	STRATEGY	EQUILIBRIA
	

Many	readers	will	be	content	to	understand	mixed	strategies	at	a	qualitative
conceptual	 level	and	 leave	 the	calculation	of	 the	actual	numbers	 to	a	computer
program,	which	can	handle	mixed	strategies	when	each	player	has	any	number
of	 pure	 strategies,	 some	 of	which	may	 not	 even	 be	 used	 in	 the	 equilibrium.11
These	readers	can	skip	the	rest	of	this	chapter	without	any	loss	of	continuity.	But
for	those	readers	who	know	a	little	high-school	algebra	and	geometry	and	want



to	know	more	about	the	method	of	calculation,	we	provide	a	few	details.12
First	 consider	 the	algebraic	method.	The	proportion	of	Left	 in	 the	kicker’s

mixture	is	the	unknown	we	want	to	solve	for;	call	it	x.	This	is	a	fraction,	so	the
proportion	of	Right	is	(1–x).	The	success	rate	of	the	mixture	against	the	goalie’s
Left	 is	58x	+	93(1–x)	=	93–35x	percent,	 and	 that	 against	 the	goalie’s	Right	 is
95x	+	70(1–x)	=	70	+	25x.	For	these	two	to	be	equal,	93–35x	=	70	+	25x,	or	23	=
60x,	or	x	=	23/60	=	0.383.

We	can	also	 find	 the	 solution	graphically	by	 showing	 the	 consequences	of
various	 mixes	 in	 a	 chart.	 The	 fraction	 of	 times	 Left	 figures	 in	 the	 kicker’s
mixture,	which	we	have	 labeled	 x,	 goes	 horizontally	 from	0	 to	 1.	 For	 each	 of
these	mixtures,	 one	 of	 the	 two	 lines	 shows	 the	 kicker’s	 success	 rate	when	 the
goalie	 chooses	 his	 pure	 strategy	 Left	 (L),	 and	 the	 other	 shows	 the	 kicker’s
success	rate	when	the	goalie	chooses	his	pure	strategy	Right	(R).	The	former	line
starts	at	the	height	93,	namely	the	value	of	the	expression	93–35x	when	x	equals
zero,	and	descends	to	58,	the	value	of	the	same	expression	when	x	equals	1.	The
latter	line	starts	at	the	vertical	position	of	70,	namely	the	value	of	the	expression
70	+	25x	when	x	equals	zero,	and	rises	to	95,	the	value	of	the	same	expression
when	x	equals	1.

	
The	 goalie	 wants	 to	 keep	 the	 kicker’s	 success	 rate	 as	 low	 as	 possible.

Therefore	if	the	composition	of	the	kicker’s	mixture	were	revealed	to	the	goalie,
he	 would	 choose	 L	 or	 R,	 whichever	 gives	 the	 lower	 of	 the	 two	 lines.	 These
portions	 of	 the	 two	 lines	 are	 shown	 thicker,	 forming	 an	 inverted	 V	 of	 the
minimum	 success	 rates	 the	 kicker	 can	 expect	 when	 the	 goalie	 exploits	 the



kicker’s	choice	optimally	 for	his	own	purpose.	The	kicker	wants	 to	choose	 the
highest	 success	 rate	 among	 these	 minima.	 He	 does	 this	 at	 the	 apex	 of	 the
inverted	V,	where	the	two	lines	intersect.	Close	inspection,	or	algebraic	solution,
shows	this	to	be	where	x	=	0.383,	and	the	success	rate	is	79.6	percent.

We	can	 similarly	 analyze	 the	goalie’s	mixing.	Let	y	denote	 the	 fraction	of
times	Left	figures	in	the	goalie’s	mixture.	Then	(1–y)	is	the	fraction	of	times	the
goalie	uses	his	Right.	If	the	kicker	plays	his	L	against	this	mixture,	his	average
success	 rate	 is	 58y	+	 95(1–y)	=	 95–37y.	 If	 the	 kicker	 plays	 his	R	 against	 this
mixture,	 his	 average	 success	 rate	 is	 93y	 +	 70(1–y)	 =	 70	 +	 23y.	 For	 the	 two
expressions	to	be	equal,	95–37y	=	70	+	23y,	or	25	=	60y,	or	y	=	25/60	=	0.417.

The	graphical	analysis	from	the	goalie’s	perspective	is	a	simple	modification
of	that	for	the	kicker.	We	show	the	consequences	of	various	mixtures	chosen	by
the	goalie	graphically.	The	fraction	y	of	times	the	goalie’s	Left	is	included	in	his
mixture	goes	horizontally	from	0	to	1.	The	two	lines	show	the	kicker’s	success
rate	against	these	mixtures,	one	corresponding	to	the	kicker’s	choice	of	his	L	and
the	other	corresponding	to	the	kicker’s	choice	of	his	R.	For	any	mixture	chosen
by	the	goalie,	the	kicker	does	best	by	choosing	L	or	R,	whichever	gives	him	the
higher	success	rate.	The	thicker	portions	of	the	lines	show	these	maxima	as	a	V
shape.	The	goalie	wants	to	keep	the	kicker’s	success	rate	as	low	as	possible.	He
does	so	by	setting	y	at	the	bottom	of	the	V—that	is,	by	choosing	the	minimum	of
the	 maxima.	 This	 occurs	 at	 y	 =	 0.417,	 and	 the	 kicker’s	 success	 rate	 is	 79.6
percent.

The	equality	of	the	kicker’s	maximum	of	minima	(maximin)	and	the	goalie’s
minimum	 of	 maxima	 (minimax)	 is	 just	 von	 Neumann	 and	 Morgenstern’s
minimax	 theorem	 in	 action.	 Perhaps	 more	 accurately	 it	 should	 be	 called	 the
“maximin-equals-minimax	theorem,”	but	the	common	name	is	shorter	and	easier
to	remember.



	

Surprising	Changes	in	Mixtures
	

Even	within	the	domain	of	zero-sum	games,	mixed	strategy	equilibria	have
some	 seemingly	 strange	 properties.	 Return	 to	 the	 soccer	 penalty	 kick	 and
suppose	 the	 goalie	 improves	 his	 skill	 at	 saving	 penalties	 struck	 to	 the	 natural
(Right)	side,	so	the	kicker’s	success	rate	there	goes	down	from	70	percent	to	60
percent.	 What	 does	 this	 do	 to	 the	 goalie’s	 mixture	 probabilities?	 We	 get	 the
answer	by	shifting	the	relevant	line	in	the	graph.	We	see	that	the	goalie’s	use	of
Left	in	his	equilibrium	mix	goes	up	from	41.7	percent	to	50	percent.	When	the
goalie	improves	his	skill	at	saving	penalties	struck	to	the	right,	he	uses	that	side
less	frequently!



	
Although	this	seems	strange	at	first	sight,	 the	reason	is	easy	to	understand.

When	the	goalie	gets	better	at	saving	penalties	struck	to	the	right,	the	kicker	will
kick	to	the	right	less	frequently.	Responding	to	the	fact	that	more	shots	are	being
struck	 to	 the	 left,	 the	 goalie	 chooses	 that	 side	 in	 greater	 proportion	 in	 his
mixture.	The	point	of	improving	your	weakness	is	that	you	don’t	have	to	use	it
so	often.

You	can	verify	this	by	recalculating	the	kicker’s	mixture	in	response	to	this
change;	you	will	see	that	the	proportion	of	Left	in	his	mixture	goes	up	from	38.3
percent	to	47.1	percent.

And	the	goalie’s	work	on	his	right-side	skill	does	yield	a	benefit:	the	average
rate	 of	 goal	 scoring	 in	 the	 equilibrium	 goes	 down	 from	 79.6	 percent	 to	 76.5
percent.

Upon	reflection,	the	seeming	paradox	has	a	very	natural	gametheoretic	logic
after	all.	What	is	best	for	you	depends	not	only	on	what	you	do	but	what	other
players	do.	That	is	what	strategic	interdependence	is,	and	should	be,	all	about.

CASE	STUDY:	JANKEN	STEP	GAME*
	

The	scene	is	a	sushi	bar	in	downtown	Tokyo.	Takashi	and	Yuichi	are	sitting
at	the	bar	drinking	sake	while	waiting	for	their	sushi.	Each	has	ordered	the	house
specialty,	 uni	 sashimi	 (sea	 urchin).	Unfortunately,	 the	 chef	 reports	 that	 he	 has
only	one	serving	of	uni	left.	Who	will	defer	to	the	other?

In	America,	the	two	might	flip	a	coin.	In	Japan,	the	two	would	more	likely



play	 the	 Janken	 game,	 better	 known	 in	 the	West	 as	 Rock	 Paper	 Scissors.	 Of
course,	 by	 now	you	 are	 experts	 in	RPS,	 so	 to	make	 the	 problem	 a	 little	more
challenging,	we	introduce	a	variant	called	the	Janken	step	game.

The	 Janken	 step	game	 is	played	on	a	 staircase.	As	before,	 the	 two	players
simultaneously	cast	rock,	paper,	or	scissors.	But	now,	the	winner	climbs	up	the
staircase:	 five	 steps	 if	 the	 winner	 played	 paper	 (five	 fingers);	 two	 steps	 for
winning	with	scissors	(two	fingers);	one	step	for	winning	with	rock	(no	fingers).
Ties	are	 replayed.	Normally,	 the	winner	 is	 the	 first	 to	 the	 top	of	 the	stairs.	We
simplify	 the	game	slightly	by	assuming	that	each	player’s	goal	 is	 just	 to	get	as
far	ahead	of	the	other	player	as	possible.

What	is	the	equilibrium	mixture	of	strategies	for	this	version	of	the	Janken
step	game?

Case	Discussion
	

Since	each	step	puts	the	winner	further	ahead	and	the	loser	that	much	further
behind,	we	have	a	zero-sum	game.	Considering	all	possible	pairs	of	moves	leads
to	the	following	game	table.	The	payoffs	are	measured	in	terms	of	steps	ahead.

	
How	can	we	find	 the	equilibrium	mixture	of	 throwing	Paper,	Scissors,	and

Rock?	Earlier	we	showed	you	some	simple	numerical	calculations	and	graphical
methods	that	are	useful	when	each	side	has	only	two	alternatives,	like	forehand
and	backhand.	But	in	the	Janken	step	game,	there	are	three	alternatives.

The	 first	 question	 to	 ask	 is	what	 strategies	will	 be	 part	 of	 the	 equilibrium
mixture.	Here	the	answer	is	that	all	three	are	essential.	To	confirm	this,	imagine
that	Yuichi	never	plays	Rock.	Then	Takashi	would	never	play	Paper,	 in	which
case	Yuichi	would	 never	 use	 Scissors.	 Continuing	 along	 this	 line	 implies	 that
Takashi	 would	 never	 use	 Rock,	 thus	 Yuichi	 would	 never	 use	 Paper.	 The



assumption	 that	Yuichi	never	uses	Rock	eliminates	all	of	his	 strategies	and	so,
must	be	false.	A	similar	argument	demonstrates	that	the	other	two	strategies	are
indispensable	to	Yuichi’s	(and	Takashi’s)	mixing	equilibrium.

We	 now	 know	 that	 all	 three	 strategies	 must	 be	 used	 in	 the	 equilibrium
mixture.	 The	 question	 becomes	 when	 will	 all	 three	 strategies	 be	 used.	 The
players	are	interested	in	maximizing	their	payoffs,	not	mixing	for	mixing’s	sake.
Yuichi	is	willing	to	randomize	between	Rock,	Paper,	and	Scissors	if	and	only	if
all	 three	options	are	equally	attractive.	 (If	Rock	offered	Yuichi	a	higher	payoff
than	 either	 Paper	 or	 Scissors,	 then	 he	 should	 play	 Rock	 exclusively;	 but	 that
would	 not	 be	 an	 equilibrium.)	Thus,	 the	 special	 case	when	 all	 three	 strategies
give	 Yuichi	 the	 same	 expected	 payoff	 is	 what	 defines	 Takashi’s	 equilibrium
mixture.

Let	us	suppose	that	Takashi	uses	the	following	mixing	rule:

p	=	probability	that	Takashi	casts	paper;
q	=	probability	that	Takashi	casts	scissors;
1–(p	+	q)	=	probability	that	Takashi	casts	rock.

	

Then	if	Yuichi	plays	rock,	he	will	fall	behind	five	steps	if	Takashi	plays	paper	(p)
and	win	one	step	if	Takashi	plays	scissors	(q),	for	a	net	payoff	of–5p	+	q.	In	the
same	way,	Yuichi	would	get	the	following	payoffs	from	each	of	his	strategies:

Rock:–5p	+	1q	+	0(1–(p	+	q))	=–5p	+	q
Scissors:	2p	+	0q–1(1–(p	+	q))	=	3p	+	q–1
Paper:	0p–2q	+	5(1–(p	+	q))	=–5p–7q	+	5

	

Yuichi	will	find	the	three	options	equally	attractive	only	when

–5p	+	q	=	3p	+	q–1	=–5p–7q	+	5
	

Solving	these	equations	reveals:	p	=	1/8,	q	=	5/8,	and	(1–p–q)	=	2/8.
This	 defines	 Takashi’s	 equilibrium	 mixture.	 The	 game	 is	 symmetric,	 so

Yuichi	will	randomize	according	to	the	same	probabilities.
Note	that	when	both	Yuichi	and	Takashi	use	their	equilibrium	mixture,	their

expected	payoff	from	each	strategy	is	zero.	While	this	is	not	a	general	feature	of



mixed	strategy	outcomes,	it	is	always	true	for	symmetric	zero-sum	games.	There
is	no	reason	why	Yuichi	should	be	favored	over	Takashi,	or	vice	versa.

In	 chapter	 14,	 “Fooling	All	 the	People	Some	of	 the	Time:	The	Las	Vegas
Slots”	offers	another	case	study	on	choice	and	chance.


