Choice
and Chance

WIT’S END

The Princess Bride is a brilliant whimsical comedy; among its many
memorable scenes, the battle of wits between the hero (Westley) and a villain
(the Sicilian Vizzini) ranks high. Westley challenges Vizzini to the following
game. Westley will poison one of two glasses of wine out of Vizzini’s sight.
Then Vizzini will choose to drink from one, and Westley must drink from the
other. Vizzini claims to be far smarter than Westley: “Have you ever heard of
Plato, Aristotle, Socrates?...Morons.” He therefore believes he can win by
reasoning.

All T have to do is divine from what I know of you: are you the sort of man
who would put the poison into his own goblet or his enemy’s? Now, a
clever man would put the poison into his own goblet, because he would
know that only a great fool would reach for what he was given. I am not a
great fool, so I can clearly not choose the wine in front of you. But you
must have known I was not a great fool, you would have counted on it, so I
can clearly not choose the wine in front of me.

He goes on to other considerations, all of which go in similar logical circles.
Finally he distracts Westley, switches the goblets, and laughs confidently as both



drink from their respective glasses. He says to Westley: “You fell victim to one
of the classic blunders. The most famous is ‘Never get involved in a land war in
Asia,’ but only slightly less well known is this: ‘Never go in against a Sicilian
when death is on the line.”” Vizzini is still laughing at his expected victory when
he suddenly falls over dead.

Why did Vizzini’s reasoning fail? Each of his arguments was innately self-
contradictory. If Vizzini reasons that Westley would poison goblet A, his
deduction is that he should choose goblet B. But Westley can also make the same
logical deduction, in which case he should poison goblet B. But Vizzini should
foresee this, and therefore should choose goblet A. But...There is no end to this
circle of logic.*

Vizzini’s dilemma arises in many games. Imagine you are about to shoot a
penalty kick in soccer. Do you shoot to the goalie’s left or right? Suppose some
consideration—your being left-footed versus right-footed, the goalie being left-
handed versus right-handed, or which side you chose the last time you took a
penalty kick—suggests that you should choose left. If the goalie is able to think
through this thinking, then he will mentally and even physically prepare to cover
that side, so you will do better by choosing his right instead. But what if the
goalie raises his level of thinking one notch? Then you would have done better
by sticking to the initial idea of kicking to his left. And so on. Where does it
end?

The only logically valid deduction in such situations is that if you follow any
system or pattern in your choices, it will be exploited by the other player to his
advantage and to your disadvantage; therefore you should not follow any such
system or pattern. If you are known to be a left-side kicker, goalies will cover
that side better and save your kicks more often. You have to keep them guessing
by being unsystematic, or random, on any single occasion. Deliberately choosing
your actions at random may seem irrational in something that purports to be
rational strategic thinking, but there is method in this apparent madness. The
value of randomization can be quantified, not merely understood in a vague
general sense. In this chapter we will explicate this method.

MIXING IT UP ON THE SOCCER FIELD

The penalty kick in soccer is indeed the simplest and the best-known
example of the general situation requiring random moves or, in gametheoretic
jargon, mixed strategies. It has been much studied in theoretical and empirical
research on games and discussed in the media.l



A penalty is awarded for a specified set of prohibited actions or fouls by the
defense in a marked rectangular area in front of its goal. Penalty kicks are also
used as a tiebreaker of last resort at the end of a soccer match. The goal is 8
yards wide and 8 feet high. The ball is put on a spot 12 yards from the goal line
directly in front of the midpoint of the goal. The kicker has to shoot the ball
directly from this spot. The goalie has to stand on the goal line at the midpoint of
the goal and is not allowed to leave the goal line until the kicker strikes the ball.

A well-kicked ball takes only two-tenths of a second to go from the spot to
the goal line. A goalie who waits to see which way the ball has been kicked
cannot hope to stop it unless it happens to be aimed directly at him. The goal
area is wide; therefore the goalie must decide in advance whether to jump to
cover one side and, if so, whether to jump left or right. The kicker in his run up
to the spot must also decide which way to kick before he sees which way the
goalie is leaning. Of course each will do his best to disguise his choice from the
other. Therefore the game is best regarded as one with simultaneous moves. In
fact, it is rare for the goalie to stand in the center without jumping left or right,
and also relatively rare for the kicker to kick to the center of the goal, and such
behavior can also be explained theoretically. Therefore we will simplify the
exposition by limiting each player to just two choices. Since kickers usually kick
using the inside of their foot, the natural direction of kicking for a right-footed
kicker is to the goalie’s right, and for a left-footed kicker it is to the goalie’s left.
For simplicity of writing we will refer to the natural side as “Right.” So the
choices are Left and Right for each player. When the goalie chooses Right, it
means the kicker’s natural side.

With two choices for each player and simultaneous moves, we can depict the
outcomes in the usual 2-by-2 game payoff table. For each combination of
choices of Left and Right by each of the two players, there is still some element
of chance; for example, the kick may sail over the crossbar, or the goalie may
touch the ball only to deflect it into the net. We measure the kicker’s payoff by
the percentage of times a goal is scored for that combination of choices, and the
goalie’s payoff by the percentage of times a goal is not scored.

Of course these numbers are specific to the particular kicker and the goalie,
and detailed data are available from the top professional soccer leagues in many
countries. For illustrative purposes, consider the average over a number of
different kickers and goalies, collected by Ignacio Palacios-Huerta, from the top
Italian, Spanish, and English leagues for the period 1995-2000. Remember that
in each cell, the payoff shown in the southwest corner belongs to the row player
(kicker), and that shown in the northeast corner belongs to the column player
(goalie). The kicker’s payoffs are higher when the two choose the opposite sides



than when they choose the same side. When the two choose opposite sides, the
kicker’s success rate is almost the same whether the side is natural or not; the
only reason for failure is a shot that goes too wide or too high. Within the pair of
outcomes when the two choose the same side, the kicker’s payoff is higher when
he chooses his natural side than when he chooses his non-natural side. All of this
IS quite intuitive.

Goalie

Left Right
42 3
Left | 58 95

Kicker
-]

30

Right | 93 70

Let us look for a Nash equilibrium of this game. Both playing Left is not an
equilibrium because when the goalie is playing Left, the kicker can improve his
payoff from 58 to 93 by switching to Right. But that cannot be an equilibrium
either, because then the goalie can improve his payoff from 7 to 30 by switching
to Right also. But in that case the kicker does better by switching to Left, and
then the goalie does better by also switching to Left. In other words, the game as
depicted does not have a Nash equilibrium at all.

The cycles of switching neatly follow the cycles of Vizzini’s circular logic as
to which goblet would contain the poison. And the fact that the game has no
Nash equilibrium in the stated pairs of strategies is exactly the gametheoretic
statement of the importance of mixing one’s moves. What we need to do is to
introduce mixing as a new kind of strategy and then look for a Nash equilibrium
in this expanded strategy set. To prepare for that, we will refer to the strategies
originally specified—Left and Right for each player—as the pure strategies.

Before we proceed with the analysis, let us simplify the game table. This
game has the special feature that the two players’ interests are exactly opposed.
In each cell, the goalie’s payoff is always 100 minus the kicker’s payoff.
Therefore, comparing cells, whenever the kicker has a higher payoff the goalie
has a lower payoff, and vice versa.

Many people’s raw intuition about games, derived from their experience of
sports just like this one, is that each game must have a winner and a loser.
However, in the general world of games of strategy, such games of pure conflict
are relatively rare. Games in economics, where the players engage in voluntary
trade for mutual benefit, can have outcomes where everyone wins. Prisoners’



dilemmas illustrate situations where everyone can lose. And bargaining and
chicken games can have lopsided outcomes in which one side wins at the
expense of the other. So most games involve a mixture of conflict and common
interest. However, the case of pure conflict was the first to be studied
theoretically and retains some special interest. As we have seen, such games are
called zero-sum, the idea being that the payoff of one player is always exactly
the negative of that of the other player, or, more generally, constant-sum, as in
the present case, where the two players’ payoffs always sum to 100.

The game table for such games can be simplified in appearance by showing
only one player’s payoff, since the other’s payoff may be understood as the
negative of that of the first player or as a constant (such as 100) minus the first
player’s payoff, as is the case in this example. Usually the row player’s payoff is
shown explicitly. In that case, the row player prefers outcomes with the larger
numbers, and the column player prefers outcomes with the smaller numbers.
With this convention, the payoff table for the penalty kick game looks like this:

Goalie

Left Right

Left 58 95
Kicker

Right g3 70

If you are the kicker, which of the two pure strategies would you prefer? If
you choose your Left, the goalie can keep your success percentage down to 58
by choosing his Left; if you choose your Right, the goalie can keep your success
percentage down to 70 by choosing his Right also.* Of the two, you prefer the
(Right, Right) combination.

Can you do better? Suppose you choose Left or Right at random in
proportions of 50:50. For example, as you stand ready to run up and kick, you
toss a coin in the palm of your hand out of the goalie’s sight and choose Left if
the coin shows tails and Right if it shows heads. If the goalie chooses his Left,
your mixture will succeed 1/2 x 58 + 1/2 x 93 = 75.5 percent of the time; if the
goalie chooses his Right, your mixture will succeed 1/2 x 95 + 1/2 x 70 = 82.5
percent of the time. If the goalie believes you are making your choice according
to such a mixture, he will choose his Left to hold your success rate down to 75.5
percent. But that is still better than the 70 you would have achieved by using the
better of your two pure strategies.



An easy way to check whether randomness is needed is to ask whether there
is any harm in letting the other player find out your actual choice before he
responds. When this would be disadvantageous to you, there is advantage in
randomness that keeps the other guessing.

Is 50:50 the best mixture for you? No. Try a mixture where you choose your
Left 40 percent of the time and your Right 60 percent of the time. To do so, you
might take a small book in your pocket, and as you stand ready to run up for
your kick, take it out and open it at a random page out of the goalie’s sight. If the
last digit of the page number is between 1 and 4, choose your Left; if it is
between 5 and 0, choose your Right. Now the success rate of your mixture
against the goalie’s Left is 0.4 x 58 + 0.6 x 93 = 79, and against the goalie’s
Right it is 0.4 x 95 + 0.6 x 70 = 80. The goalie can hold you down to 79 by
choosing his Left, but that is better than the 75.5 percent you could have
achieved with a 50:50 mix.

Observe how the successively better mixture proportions for the kicker are
narrowing the difference between the success rates against the goalie’s Left and
Right choices: from the 93 to 70 difference for the better of the kicker’s two pure
strategies, to the 82.5 to 75.5 difference for the 50:50 mix, to the 80 to 79
difference for the 40:60 mix. It should be intuitively clear that your best mixture
proportion achieves the same rate of success whether the goalie chooses his Left
or his Right. That also fits with the intuition that mixing moves is good because
it prevents the other player from exploiting any systematic choice or pattern of
choices.

A little calculation, which we postpone to a later section of this chapter,
reveals that the best mixture for the kicker is to choose his Left 38.3 percent of
the time and his Right 61.7 percent of the time. This achieves a success rate of
0.383 x 58 + 0.617 x 93 = 79.6 percent against the goalie’s Left, and 0.383 x 95
+0.617 x 70 =79.6 percent against the goalie’s Right.

What about the goalie’s strategy? If he chooses the pure strategy Left, the
kicker can achieve 93 percent success by choosing his own Right; if the goalie
chooses his pure strategy Right, the kicker can achieve 95 percent success by
choosing his own Left. By mixing, the goalie can hold the kicker down to a
much lower success rate. The best mixture for the goalie is one that gives the
kicker the same success rate whether he chooses to kick to the Left or the Right.
It turns out that the goalie should choose the proportions of his Left and Right at
41.7 and 58.3, respectively, and this gives the kicker a success rate of 79.6
percent.

Notice one seeming coincidence: the success percentage the kicker can
ensure by choosing his best mixture, namely 79.6, is the same as the success



percentage to which the goalie can hold down the kicker by choosing his own
best mixture. Actually this is no coincidence; it is an important general property
of mixed strategy equilibria in games of pure conflict (zero-sum games).

This result, called the minimax theorem, is due to Princeton mathematician
and polymath John von Neumann. It was later elaborated by him, in
coauthorship with Princeton economist Oscar Morgenstern, in their classic book
Theory of Games and Economic Behavior,? which can be said to have launched
the whole subject of game theory.

The theorem states that in zero-sum games in which the players’ interests are
strictly opposed (one’s gain is the other’s loss), one player should attempt to
minimize his opponent’s maximum payoff while his opponent attempts to
maximize his own minimum payoff. When they do so, the surprising conclusion
is that the minimum of the maximum (minimax) payoffs equals the maximum of
the minimum (maximin) payoffs. The general proof of the minimax theorem is
quite complicated, but the result is useful and worth remembering. If all you
want to know is the gain of one player or the loss of the other when both play
their best mixes, you need only compute the best mix for one of them and
determine its result.

Theory and Reality

How close is the performance of actual kickers and goalies to our theoretical

calculations about the respective best mixtures? The following table is

constructed from Palacios-Huerta’s data and our calculations.2

The percent of times a goal results
when the other player chooses his
Proportion of Left
in mixture for Left Right
Best IB.3% 79.6% 79.6%
Kicler
Actual 40.0% 79.0% B0.0%
Best 41.7% 79.6% 79.6%
Goalie
Actual 42.3% 79.53% 79.97%

Pretty good, huh? In each case, the actual mixture proportions are quite close to
the best. The actual mixtures yield almost equal success rates regardless of the
other player’s choice and therefore are close to being immune to exploitation by
the other.

Similar evidence of agreement between actual play and theoretical



predictions comes from top-level professional tennis matches.# This is to be
expected. The same people regularly play against one another and study their
opponents’ methods; any reasonably obvious pattern would be noticed and
exploited. And the stakes are large, in terms of money, achievement, and fame;
therefore the players have strong incentives not to make mistakes.

However, the success of game theory is not complete or universal. Later in
this chapter we will examine how well or poorly the theory of mixed strategies
succeeds in other games and why. First let us summarize the general principle
expressed here in the form of a rule for action:

RULE 5: In a game of pure conflict (zero-sum game), if it would be
disadvantageous for you to let the opponent see your actual choice in
advance, then you benefit by choosing at random from your available
pure strategies. The proportions in your mix should be such that the
opponent cannot exploit your choice by pursuing any particular pure
strategy from the ones available to him—that is, you get the same
average payoff when he plays any of his pure strategies against your
mixture.

When one player follows this rule, the other cannot do any better by using one of
his own pure strategies than another. Therefore he is indifferent between them
and cannot do any better than to use the mixture prescribed for him by the same
rule. When both follow the rule, then neither gets any better payoff by deviating
from this behavior. This is just the definition of Nash equilibrium from chapter
4. In other words, what we have when both players use this rule is a Nash
equilibrium in mixed strategies. So, the von Neumann-Morgenstern minimax
theorem can be regarded as a special case of the more general theory of Nash.
The minimax theorem works only for two-player zero-sum games, while the
Nash equilibrium concept can be used with any number of players and any
mixture of conflict and common interest in the game.

Equilibria of zero-sum games don’t necessarily have to involve mixed
strategies. As a simple example, suppose the kicker has very low success rates
when kicking to the Left (his non-natural side) even when the goalie guesses
wrong. This can happen because there is a significant probability that the kicker
will miss the target anyway when kicking with the outside of his foot.
Specifically, suppose the payoff table is:



Goalie

Left Right

Left 18 a5

Kicker

Right 93 70

Then the strategy Right is dominant for the kicker, and there is no reason to mix.
More generally, there can be equilibria in pure strategies without dominance. But
this is no cause for concern; the methods for finding mixed strategy equilibria
will also yield such pure strategy equilibria as special cases of mixtures, where
the proportion of the one strategy in the mixture is the entire 100 percent.

CHILD’S PLAY

On October 23, 2005, Andrew Bergel of Toronto was crowned that year’s
Rock Paper Scissors International World Champion and received the Gold
Medal of the World RPS Society. Stan Long of Newark, California, won the
silver medal, and Stewart Waldman of New York the bronze.

The World RPS Society maintains a web site, www.worldrps.com, where the
official rules of play and various guides to strategy are posted. It also holds an
annual world championship event. Did you know that the game you played as a
child has become this big?

The rules of the game are the same as the ones you followed as a kid and as
described in chapter 1. Two players simultaneously choose (“throw,” in the
technical jargon of the game) one of three hand signals: Rock is a fist, Paper is a
horizontal flat palm, and Scissors is signified by holding out the index and
middle fingers at an angle to each other and pointing toward the opponent. If the
two players make the same choice, it is a tie. If the two make different choices,
Rock wins against (breaks) Scissors, Scissors wins against (cuts) Paper, and
Paper wins against (covers) Rock. Each pair plays many times in succession, and
the winner of a majority of these plays is the winner of that match.

The elaborate rules set out on the web page of the World RPS Society ensure
two things. First, they describe in precise terms the hand shapes that constitute
each type of throw; this prevents any attempts at cheating, where one player
makes some ambiguous gesture, which he later claims to be the one that beats
what his opponent chose. Second, they describe a sequence of actions, called the



prime, the approach, and the delivery, intended to ensure that the two players’
moves are simultaneous; this prevents one player from seeing in advance what
the other has done and making the winning response to it.

Thus we have a two-player simultaneous-move game with three pure
strategies for each. If a win counts as 1 point, a loss as—1, and a tie as 0, the
game table is as follows, with the players named Andrew and Stan in honor of
their achievements in the 2005 World Championships:

Stan’s choice

Rock Paper Scissors

Rock i -1 1

Paper | 1 0 -1

Andrew’s choice

Scimsors | —1 1 0

What would game theory recommend? This is a zero-sum game, and revealing
your move in advance can be disadvantageous. If Andrew chooses just one pure
move, Stan can always make a winning response and hold Andrew’s payoff
down to—1. If Andrew mixes the three moves in equal proportions of 1/3 each, it
gives him the average payoff of (1/3) x 1 + (1/3) x 0 + (1/3) x (1) = 0 against
any one of Stan’s pure strategies. With the symmetric structure of the game, this
is quite obviously the best that Andrew can do, and calculation confirms this
intuition. The same argument goes for Stan. Therefore mixing all three strategies
in equal proportions is best for both and yields a Nash equilibrium in mixed
strategies.

However, this is not how most participants in the championships play. The
web site labels this the Chaos Play and advises against it. “Ciritics of this strategy
insist that there is no such thing as a random throw. Human beings will always
use some impulse or inclination to choose a throw, and will therefore settle into
unconscious but nonetheless predictable patterns. The Chaos School has been
dwindling in recent years as tournament statistics show the greater effectiveness
of other strategies.”

The problem of “settling into unconscious but nonetheless predictable
patterns” is indeed a serious one deserving further discussion, to which we will
turn in a moment. But first let us see what kinds of strategies are favored by
participants in the World RPS Championship.



The web site lists several “gambits,” like the cleverly named strategy
Bureaucrat, which consists of three successive throws of Paper, or Scissor
Sandwich, which consists of Paper, Scissors, Paper. Another is the Exclusion
Strategy, which leaves out one of the throws. The idea behind these is that
opponents will focus their entire strategy on predicting when the pattern will
change, or when the missing throw will appear, and you can exploit this
weakness in their reasoning.

There are also physical skills of deception, and detection of the opponent’s
deception. The players watch each other’s body language and hands for signals
of what they are about to throw; they also try to deceive the opponent by acting
in a way that suggests one throw and choosing a different one instead. Soccer
penalty kickers and goalies similarly watch each other’s legs and body
movements to guess which way the other will go. Such skills matter; for
example, in the penalty shoot-out that decided the 2006 World Cup quarter-final
match between England and Portugal, the Portuguese goalie guessed correctly
every time and saved three of the kicks, which clinched the victory for his team.

MIXING IT UP IN THE LABORATORY

By contrast with the remarkable agreement between theory and reality of
mixed strategies on the soccer field and the tennis court, the evidence from
laboratory experiments is mixed or even negative. The first book-length
treatment of experimental economics declared flatly: “Subjects in experiments
are rarely (if ever) observed flipping coins.”> What explains this difference?

Some of the reasons are the same as those discussed in chapter 4 when we
contrasted the two kinds of empirical evidence. The laboratory setting involves
somewhat artificially structured games played by novice subjects for relatively
small stakes, whereas the field setting has experienced players engaged in
familiar games, for stakes that are huge in terms of fame and prestige and often
also in terms of money.

Another limitation of the experimental setting may be at work. The
experiments always begin with a session where the rules are carefully explained,
and the experimenters go to great lengths to ensure that the subjects understand
the rules. The rules make no explicit mention of the possibility of randomization
and don’t provide coins or dice or the instruction, “You are allowed, if you wish,
to flip the coins or roll the dice to decide what you are going to do.” Then it is
hardly surprising that the subjects, instructed to follow the rules precisely as
stated, don’t flip coins. We have known ever since Stanley Milgram’s renowned



experiment that subjects treat experimenters as authority figures to be obeyed.2 It
is hardly surprising that they follow the rules literally and do not think of
randomizing.

However, the fact remains that even when the laboratory games were
structured to be similar to soccer penalty kicks, where the value of mixing moves
is evident, the subjects do not seem to have used randomization either correctly
or appropriately over time.”

Thus we have a mixed record of success and failure for the theory of mixed
strategies. Let us develop some of these findings a little further, both to
understand what we should expect in games we observe and to learn how to play

better.

HOW TO ACT RANDOMLY

Randomization does not mean alternating between the pure strategies. If a
pitcher is told to mix fastballs and forkballs in equal proportions, he should not
throw a fastball, then a forkball, then a fastball again, and so on in strict rotation.
The batters will quickly notice the pattern and exploit it. Similarly, if the
proportion of fastballs to forkballs is to be 60:40, that does not mean throwing
six fastballs followed by four forkballs and so on.

What should the pitcher do when mixing fastballs and forkballs randomly in
equal proportions? One way is to pick a number at random between 1 and 10. If
the number is 5 or less, throw a fastball; if the number is 6 or above, go for the
forkball. Of course, this only reduces the problem one layer. How do you go
about picking a random number between 1 and 10?

Let us start with the simpler problem of trying to write down what a random
sequence of coin tosses will look like. If the sequence is truly random, then
anyone who tries to guess what you write down will be correct no more than 50
percent on average. But writing down such a “random” sequence is more
difficult than you might imagine.

Psychologists have found that people tend to forget that heads is just as
likely to be followed by heads as by tails; therefore they have too many
reversals, and too few strings of heads, in their successive guesses. If a fair coin
toss comes up heads thirty times in a row, the next toss is still equally likely to
be heads or tails. There is no such thing as “being due” for tails. Similarly, in the
lottery, last week’s number is just as likely to win again as any other number.

The knowledge that people fall into the error of too many reversals explains
many of the stratagems and gambits used by participants in the World RPS



Championships. Players attempt to exploit this weakness and, at the next higher
level, attempt to exploit these attempts in turn. The player who throws Paper
thrice in succession is looking for the opponent to think that a fourth Paper is
unlikely, and the player who leaves out one of the throws and mixes among just
the other two in many successive plays is trying to exploit the opponent’s
thinking that the missing throw is “due.”

To avoid getting caught putting order into the randomness, you need a more
objective or independent mechanism. One such trick is to choose some fixed
rule, but one that is both secret and sufficiently complicated that it is difficult to
discover. Look, for example, at the length of our sentences. If the sentence has
an odd number of words, call it heads; if the sentence length is even, call it tails.
That should be a good random number generator. Working backward over the
previous ten sentences yields T, H, H, T, H, H, H, H, T, T. If our book isn’t
handy, don’t worry; we carry random number sequences with us all the time.
Take a succession of your friends’ and relatives’ birthdates. For even dates, guess
heads; for odd, tails. Or look at the second hand on your watch. Provided your
watch is not too accurate, no one else will know the current position of the
second hand. Our advice to the pitcher who must mix in proportions of 50:50 or
to the catcher who is calling the pitches is to glance at his wristwatch just before
each pitch. If the second hand points toward an even number, then throw a
fastball; an odd number, then throw a forkball. The second hand can be used to
achieve any ratio. To throw fastballs 40 percent of the time and forkballs 60
percent, choose fastball if the second hand is between 1 and 24, and forkball if it
is between 25 and 60.

Just how successful were the top professionals in tennis and soccer at correct
randomization? The analysis of data in grand slam tennis finals revealed that
there was indeed some tendency to reverse between serves to the forehand and
the backhand more frequently than appropriate for true randomness; in the
jargon of statistics, there was negative serial correlation. But it seems to have
been too weak to be successfully picked up and exploited by the opponents, as
seen from the statistically insignificant difference of success rates of the two
kinds of serves. In the case of soccer penalty kicks, the randomization was close
to being correct; the incidence of reversals (negative serial correlation) was
statistically insignificant. This is understandable; successive penalty kicks taken
by the same player come several weeks apart, so the tendency to reverse is likely
to be less pronounced.

The championship-level players of Rock Paper Scissors seem to place a lot
of importance on strategies that deliberately depart from randomization, and try
to exploit the other player’s attempts to interpret patterns. How successful are



these attempts? One kind of evidence would come from consistency of success.
If some players are better at deploying nonrandom strategies, they should do
well in contest after contest, year after year. The World RPS Society does not
“have the manpower to record how each competitor does at the Championships
and the sport is not developed enough so that others track the info. In general,
there have not been too many consistent players in a statistically significant way,
but the Silver medalist from 2003 made it back to the final 8 the following
year.”® This suggests that the elaborate strategies do not give any persistent
advantage.

Why not rely on the other player’s randomization? If one player is using his
best mix, then his success percentage is the same no matter what the other does.
Suppose you are the kicker in the soccer example, and the goalie is using his best
mix: Left 41.7 percent and Right 58.3 percent of the time. Then you will score a
goal 79.6 percent of the time whether you kick to the Left, the Right, or any
mixture of the two. Observing this, you might be tempted to spare yourself the
calculation of your own best mix, just stick to any one action, and rely on the
other player using his best mix. The problem is that unless you use your best
mix, the other does not have the incentive to go on using his. If you stick to the
Left, for example, the goalie will switch to covering the Left also. The reason
why you should use your best mix is to keep the other player using his.

Unique Situations

All of this reasoning makes sense in games like football, baseball, or tennis,
in which the same situation arises many times in one game, and the same players
confront each other from one game to the next. Then there is time and
opportunity to observe any systematic behavior and respond to it.
Correspondingly, it is important to avoid patterns that can be exploited and stick
to the best mix. But what about games that are played just once?

Consider the choices of points of attack and defense in a battle. Here the
situation is usually unique, and the other side cannot infer any systematic pattern
from your previous actions. But a case for random choice arises from the
possibility of espionage. If you choose a definite course of action, and the enemy
discovers what you are going to do, he will adapt his course of action to your
maximum disadvantage. You want to surprise the enemy; the surest way to do so
is to surprise yourself. You should keep your options open as long as possible,
and at the last moment choose between them by an unpredictable and, therefore,
espionage-proof device. The relative proportions of the device should also be



such that if the enemy discovered them, he would not be able to turn the
knowledge to his advantage. This is just the best mix calculated in the
description above.

Finally, a warning. Even when you are using your best mix, there will be
occasions when you have a poor outcome. Even if the kicker is unpredictable,
sometimes the goalie will still guess right and save the shot. In football, on third
down and a yard to go, a run up the middle is the percentage play; but it is
important to throw an occasional bomb to keep the defense honest. When such a
pass succeeds, fans and sportscasters will marvel at the cunning choice of play
and say the coach is a genius. When it fails, the coach will come in for a lot of
criticism: how could he gamble on a long pass instead of going for the
percentage play?

The time to justify the coach’s strategy is before using it on any particular
occasion. The coach should publicize the fact that mixing is vital; that the run up
the middle remains such a good percentage play precisely because some
defensive resources must be diverted to guard against the occasional costly
bomb. However, we suspect that even if the coach shouts this message in every
newspaper and on every TV channel before the game, and then uses a bomb in
such a situation and it fails, he will come in for just as much criticism as if he
had not tried to educate the public in the elements of game theory.

MIXING STRATEGIES IN MIXED-MOTIVES GAMES

In this chapter thus far, we have considered only games where the players’
motives are in pure conflict, that is, zero-sum or constant-sum games. But we
have always emphasized that most games in reality have aspects of common
interests as well as conflict. Does mixing have a role in these more general non-
zero-sum games? Yes, but with qualifications.

To illustrate this, let us consider the hunting version of the battle of the sexes
game from chapter 4. Remember our intrepid hunters Fred and Barney, who are
deciding separately, each in his own cave, whether to go stag hunting or bison
hunting that day. A successful hunt requires effort from both, so if the two make
opposite choices, neither gets any meat. They have a common interest in
avoiding such outcomes. But between the two successful possibilities where they
are in the same hunting ground, Fred prefers stag meat and rates the outcome of
a jointly conducted stag hunt 4 instead of 3, while Barney has the opposite
preferences. Therefore the game table is as shown below.



Barney’s choice

Stag Bison

3 0
Stag | 4

0 4
Bison | 0 3

Fred's choice

We saw that the game has two Nash equilibria, shown shaded. We would now
call these equilibria in pure strategies. Can there be equilibria with mixing?

Why would Fred choose a mixture? Perhaps he is uncertain about Barney’s
choice. If Fred’s subjective uncertainty is such that he thinks the probabilities of
Barney choosing Stag and Bison are y and (1-y), respectively, then he expects
the payoff of 4y + 0(1-y) = 4y if he himself chooses Stag, and Oy + 3(1-y) if he
himself chooses Bison. If y is such that 4y = 3(1-y), or 3 = 7y, or y = 3/7, then
Fred gets the same payoff whether he chooses Stag or Bison, and also if he
chooses to mix between the two in any proportions at all. But suppose Fred’s
mixture of Stag and Bison is such that Barney is indifferent between his pure
strategies. (This game is very symmetric, so you can guess, and also calculate,
that this means Fred choosing Stag a fraction x = 4/7 of the time.) Then Barney
could be mixing in just the right proportions to keep Fred indifferent, and
therefore willing to choose just the right mixture of his own. The two mixtures x
= 4/7 and y = 3/7 constitute a Nash equilibrium in mixed strategies.

Is such an equilibrium satisfactory in any way? No. The problem is that the
two are making these choices independently. Therefore Fred will choose Stag
when Barney is choosing Bison (4/7) % (4/7) = 16/49 of the time, and the other
way around (3/7) x (3/7) = 9/49 of the time. Thus in 25/49 or just over half of
the times the two will find themselves in separate places and get zero payoffs.
Using the formulas in our calculation, we see that each gets the payoff 4 x (3/7)
+ 0 x (4/7) = 12/7 = 1.71, which is less than the 3 of the unfavorable pure
strategy equilibrium.

To avoid such errors, what they need is coordinated mixing. Can they do this
while they are in their separate caves with no immediate means of
communication? Perhaps they can make an agreement in advance based on
something they know they are both going to observe as they set out. Suppose in
their area there is a morning shower on half of the days. They can make an
agreement that they both will go stag hunting if it is raining and bison hunting if
it is dry. Then each will get an average payoff of 1/2 x 3 + 1/2 x 4 = 3.5. Thus
coordinated randomization provides them with a neat way to split the difference



between the favored and unfavored pure strategy Nash equilibria, that is, as a
negotiation device.

The uncoordinated Nash equilibrium in mixed strategies not only has low
payoff, but it is also fragile or unstable. If Fred’s estimate of Barney’s choosing
Stag tips ever so slightly above 3/7 =0.42857, say to 0.43, then Fred’s payoff
from his own Stag, namely 4 x 0.43 + 0 x 0.57 = 1.72, exceeds that from his
own Bison, namely 0 % 0.43 + 3 x 0.57 = 1.71. Therefore Fred no longer mixes
but chooses pure Stag instead. Then Barney’s best response is also pure Stag,
and the mixed strategy equilibrium breaks down.

Finally, the mixed strategy equilibrium has a strange and unintuitive feature.
Suppose we change Barney’s payoffs to 6 and 7 instead of 3 and 4, respectively,
leaving Fred’s payoff numbers unchanged. What does that do to the mixture
proportions? Again write y for the fraction of the time Barney is thought to
choose Stag. Then Fred still gets 4y from his own choice of pure Stag and 3(1-y)
from his own choice of pure Bison, leading to y = 3/7 to keep Fred indifferent
and therefore willing to mix. However, writing x for the proportion of Stag in
Fred’s mixture, Barney gets 6x + 0(1-x) = 6x from his own pure Stag and Ox +
7(1-x) = 7(1-x) from his own pure Bison. Equating the two, we have x = 7/13.
Thus the change in Barney’s payoffs leaves his own equilibrium mixture
unaffected, but changes Fred’s equilibrium mixture proportions!

On further reflection, this is not so strange. Barney may be willing to mix
only because he is unsure about what Fred is doing. So the calculation involves
Barney’s payoffs and Fred’s choice probabilities. If we set the resulting
expressions equal and solve, we see that Fred’s mixture probabilities are
“determined by” Barney’s payoffs. And vice versa.

However, this reasoning is so subtle, and at first sight so strange, that most
players in experimental situations fail to figure it out even when prompted to
randomize. They change their mixture probabilities when their own payoffs
change, not when the other player’s payoffs change.

MIXING IN BUSINESS AND OTHER WARS

Our examples of the use of mixed strategies came from the sporting world.
Why are there so few instances of randomized behavior out in the “real” worlds
of business, politics, or war? First, most of those games are non-zero-sum, and
we saw that the role of mixing in those situations is more limited and fragile, and
not necessarily conducive to good outcomes. But other reasons also exist.

It may be difficult to build in the idea of leaving the outcome to chance in a



corporate culture that wants to maintain control over the outcome. This is
especially true when things go wrong, as they must occasionally when moves are
chosen randomly. While (some) people understand that a football coach has to
fake a punt once in a while in order to keep the defense honest, a similarly risky
strategy in business can get you fired if it fails. But the point isn’t that the risky
strategy will always work, but rather that it avoids the danger of set patterns and
predictability.

One application in which mixed strategies improve business performance is
price discount coupons. Companies use these to build market share. The idea is
to attract new customers without giving the same discount to your existing
market. If competitors simultaneously offer coupons, then customers don’t have
any special incentive to switch brands. Instead, they stay with their current brand
and take the discount. Only when one company offers coupons while the others
don’t are new customers attracted to try the product.

The price coupon game for competitors such as Coke and Pepsi is then
analogous to the coordination problem of the hunters. Each company wants to be
the only one to give coupons, just as Fred and Barney each want to choose his
own favored hunting ground. But if they try to do this simultaneously, the effects
cancel out and both are worse off. One solution would be to follow a predictable
pattern of offering coupons every six months, and the competitors could learn to
alternate. The problem with this approach is that when Coke predicts Pepsi is
just about to offer coupons, Coke should step in first to preempt. The only way
to avoid preemption is to keep the element of surprise that comes from using a
randomized strategy.

Of course, independent randomization runs the risk of “mistakes” exactly as
in our story of the Stone Age hunters Fred and Barney. Competitors can do much
better by cooperating instead, and there is strong statistical evidence that Coke
and Pepsi reached just such a cooperative solution. There was a span of 52
weeks in which Coke and Pepsi each offered price promotions for 26 weeks,
without any overlap. If each was choosing to run a promotion in any one week at
random with a 50 percent chance, and choosing this independently of the other,
the chance of there being zero overlaps is 1/495918532948104, or less than 1 in
a quadrillion (a billion billion)! This was such a startling finding that it made its
way to the media, including the CBS program 60 Minutes.?

The purpose of the coupons is to expand market share. But each firm realizes
that to be successful, it has to offer promotions when the other is not offering
similar promotions. The strategy of randomly choosing weeks for promotion
offers may have the intention of catching the other off-guard. But when both
firms are following similar strategies, there are many weeks when both offer



promotions. In those weeks their campaigns will merely cancel each other out;
neither firm increases its share and both make a lower profit. The strategies thus
create a prisoners’ dilemma. The firms, being in an ongoing relationship,
recognize that both can do better by resolving the dilemma. The way to do this is
for each company to take a turn at having the lowest price, and then once the
promotion ends, everyone goes back to their regular brands. That is just what
they did.

There are other cases in which businesses must avoid set patterns and
predictability. Some airlines offer discount tickets to travelers who are willing to
buy tickets at the last minute. But they won’t tell you how many seats are left in
order to help you estimate the chances of success. If last-minute ticket
availability were more predictable, then there would be a much greater
possibility of exploiting the system, and the airlines would lose more of their
otherwise regular paying customers.

The most widespread use of randomized strategies in business is to motivate
compliance at a lower monitoring cost. This applies to everything from tax
audits to drug testing to parking meters. It also explains why the punishment
should not necessarily fit the crime.

The typical fine for illegal parking at a meter is many times the meter fee. If
the meter rate is a dollar per hour, would a fine of $1.01 suffice to keep people
honest? It would, provided the traffic police were sure to catch you each time
you parked without putting money in the meter. Such enforcement would be
very costly. The salaries of the traffic wardens would be the largest item, but the
cost of administering the collection mechanism needed to keep the policy
credible would be quite substantial, too.

Instead, the authorities use an equally effective and less costly strategy,
namely to have larger fines and relax the enforcement efforts. When the fine is
$25, a 1 in 25 risk of being caught is enough to keep you honest. A much smaller
police force will do the job, and the fines collected will come closer to covering
the administrative costs.

This is another instance of the usefulness of mixed strategies. It is similar to
the soccer example in some ways, and different in other respects. Once again,
the authorities choose a random strategy because it is better than any systematic
action: no enforcement at all would mean misuse of scarce parking places, and a
100 percent enforcement would be too costly. However, the other side, the
parking public, does not necessarily have a random strategy. In fact the
authorities want to make the enforcement probability and the fine large enough
to induce the public to comply with the parking regulations.

Random drug testing has many of the same features as parking meter



enforcement. It is too time-consuming and costly to test every employee every
day for evidence of drug use. It is also unnecessary. Random testing will uncover
those who are unable to work drug free and discourage others from recreational
use. Again, the probability of detection is small, but the fine when caught is
high. This is one of the problems with the IRS audit strategy. The penalties are
small given the chances of getting caught. When enforcement is random, it must
be that the punishment is worse than the crime. The rule should be that the
expected punishment should fit the crime, where expectation is in the statistical
sense, taking into account the chance of being caught.

Those hoping to defeat enforcement can also use random strategies to their
benefit. They can hide the true crime in the midst of many false alarms or
decoys, and the enforcer’s resources become spread too thin to be effective. For
example, an air defense must be able to destroy nearly 100 percent of all
incoming missiles. A cost-effective way of defeating the air defense is for the
attacker to surround the real missile with a bodyguard of decoys. It is much
cheaper to build a decoy missile than the real thing. Unless the defender can
perfectly distinguish among them, he will be required to stop all incoming
missiles, real and fake.

The practice of shooting dud shells began in World War II, not by the
intentional design of building decoy missiles, but as a response to the problem of
quality control. “The elimination of defective shells in production is expensive.
Someone got the idea then of manufacturing duds and shooting them on a
random basis. A military commander cannot afford to have a delayed time bomb
buried under his position, and he never knew which was which. The bluff made
him work at every unexploded shell that came over.”19

When the cost of defense is proportional to the number of missiles that must
be shot down, attackers can make this enforcement cost unbearably high. This
problem is one of the major challenges in the design of the Star Wars defense; it
may have no solution.

HOW TO FIND MIXED STRATEGY EQUILIBRIA

Many readers will be content to understand mixed strategies at a qualitative
conceptual level and leave the calculation of the actual numbers to a computer
program, which can handle mixed strategies when each player has any number
of pure strategies, some of which may not even be used in the equilibrium.!
These readers can skip the rest of this chapter without any loss of continuity. But

for those readers who know a little high-school algebra and geometry and want



to know more about the method of calculation, we provide a few details.2

First consider the algebraic method. The proportion of Left in the kicker’s
mixture is the unknown we want to solve for; call it x. This is a fraction, so the
proportion of Right is (1-x). The success rate of the mixture against the goalie’s
Left is 58x + 93(1-x) = 93-35x percent, and that against the goalie’s Right is
95x + 70(1—x) = 70 + 25x. For these two to be equal, 93—-35x = 70 + 25x, or 23 =
60x, or x = 23/60 = 0.383.

We can also find the solution graphically by showing the consequences of
various mixes in a chart. The fraction of times Left figures in the kicker’s
mixture, which we have labeled x, goes horizontally from 0 to 1. For each of
these mixtures, one of the two lines shows the kicker’s success rate when the
goalie chooses his pure strategy Left (L), and the other shows the kicker’s
success rate when the goalie chooses his pure strategy Right (R). The former line
starts at the height 93, namely the value of the expression 93—35x when x equals
zero, and descends to 58, the value of the same expression when x equals 1. The
latter line starts at the vertical position of 70, namely the value of the expression
70 + 25x when x equals zero, and rises to 95, the value of the same expression
when x equals 1.

SUCCESS ; e m
RATE OF . Maximum of minima o5
KICKER'S 7 § '
MIXTURE
79.6 —

P\ /— 58
Against goalie
plaving his

|
] 0383 1

= FRACTION OF TIMES LEFT
USED IN KICKER'S MIXTURE

The goalie wants to keep the kicker’s success rate as low as possible.
Therefore if the composition of the kicker’s mixture were revealed to the goalie,
he would choose L or R, whichever gives the lower of the two lines. These
portions of the two lines are shown thicker, forming an inverted V of the
minimum success rates the kicker can expect when the goalie exploits the



kicker’s choice optimally for his own purpose. The kicker wants to choose the
highest success rate among these minima. He does this at the apex of the
inverted V, where the two lines intersect. Close inspection, or algebraic solution,
shows this to be where x = 0.383, and the success rate is 79.6 percent.

We can similarly analyze the goalie’s mixing. Let y denote the fraction of
times Left figures in the goalie’s mixture. Then (1-y) is the fraction of times the
goalie uses his Right. If the kicker plays his L against this mixture, his average
success rate is 58y + 95(1-y) = 95-37y. If the kicker plays his R against this
mixture, his average success rate is 93y + 70(1-y) = 70 + 23y. For the two
expressions to be equal, 95-37y = 70 + 23y, or 25 = 60y, or y = 25/60 = 0.417.

The graphical analysis from the goalie’s perspective is a simple modification
of that for the kicker. We show the consequences of various mixtures chosen by
the goalie graphically. The fraction y of times the goalie’s Left is included in his
mixture goes horizontally from 0 to 1. The two lines show the kicker’s success
rate against these mixtures, one corresponding to the kicker’s choice of his L and
the other corresponding to the kicker’s choice of his R. For any mixture chosen
by the goalie, the kicker does best by choosing L or R, whichever gives him the
higher success rate. The thicker portions of the lines show these maxima as a V
shape. The goalie wants to keep the kicker’s success rate as low as possible. He
does so by setting y at the bottom of the V—that is, by choosing the minimum of
the maxima. This occurs at y = 0.417, and the kicker’s success rate is 79.6
percent.

The equality of the kicker’s maximum of minima (maximin) and the goalie’s
minimum of maxima (minimax) is just von Neumann and Morgenstern’s
minimax theorem in action. Perhaps more accurately it should be called the
“maximin-equals-minimax theorem,” but the common name is shorter and easier
to remember.
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Surprising Changes in Mixtures

Even within the domain of zero-sum games, mixed strategy equilibria have
some seemingly strange properties. Return to the soccer penalty kick and
suppose the goalie improves his skill at saving penalties struck to the natural
(Right) side, so the kicker’s success rate there goes down from 70 percent to 60
percent. What does this do to the goalie’s mixture probabilities? We get the
answer by shifting the relevant line in the graph. We see that the goalie’s use of
Left in his equilibrium mix goes up from 41.7 percent to 50 percent. When the
goalie improves his skill at saving penalties struck to the right, he uses that side

less frequently!
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Although this seems strange at first sight, the reason is easy to understand.
When the goalie gets better at saving penalties struck to the right, the kicker will
kick to the right less frequently. Responding to the fact that more shots are being
struck to the left, the goalie chooses that side in greater proportion in his
mixture. The point of improving your weakness is that you don’t have to use it
so often.

You can verify this by recalculating the kicker’s mixture in response to this
change; you will see that the proportion of Left in his mixture goes up from 38.3
percent to 47.1 percent.

And the goalie’s work on his right-side skill does yield a benefit: the average
rate of goal scoring in the equilibrium goes down from 79.6 percent to 76.5
percent.

Upon reflection, the seeming paradox has a very natural gametheoretic logic
after all. What is best for you depends not only on what you do but what other
players do. That is what strategic interdependence is, and should be, all about.

CASE STUDY: JANKEN STEP GAME#

The scene is a sushi bar in downtown Tokyo. Takashi and Yuichi are sitting
at the bar drinking sake while waiting for their sushi. Each has ordered the house
specialty, uni sashimi (sea urchin). Unfortunately, the chef reports that he has
only one serving of uni left. Who will defer to the other?

In America, the two might flip a coin. In Japan, the two would more likely



play the Janken game, better known in the West as Rock Paper Scissors. Of
course, by now you are experts in RPS, so to make the problem a little more
challenging, we introduce a variant called the Janken step game.

The Janken step game is played on a staircase. As before, the two players
simultaneously cast rock, paper, or scissors. But now, the winner climbs up the
staircase: five steps if the winner played paper (five fingers); two steps for
winning with scissors (two fingers); one step for winning with rock (no fingers).
Ties are replayed. Normally, the winner is the first to the top of the stairs. We
simplify the game slightly by assuming that each player’s goal is just to get as
far ahead of the other player as possible.

What is the equilibrium mixture of strategies for this version of the Janken
step game?

Case Discussion

Since each step puts the winner further ahead and the loser that much further
behind, we have a zero-sum game. Considering all possible pairs of moves leads
to the following game table. The payoffs are measured in terms of steps ahead.

Yuichi's choice

Rock Paper Scissors
0 3 -1
£ Rock | © -5 1
£
o -5 0 2
i
= Paper | 5 0 -2
g 1 -2 [
Scissors | —1 2 i

How can we find the equilibrium mixture of throwing Paper, Scissors, and
Rock? Earlier we showed you some simple numerical calculations and graphical
methods that are useful when each side has only two alternatives, like forehand
and backhand. But in the Janken step game, there are three alternatives.

The first question to ask is what strategies will be part of the equilibrium
mixture. Here the answer is that all three are essential. To confirm this, imagine
that Yuichi never plays Rock. Then Takashi would never play Paper, in which
case Yuichi would never use Scissors. Continuing along this line implies that
Takashi would never use Rock, thus Yuichi would never use Paper. The



assumption that Yuichi never uses Rock eliminates all of his strategies and so,
must be false. A similar argument demonstrates that the other two strategies are
indispensable to Yuichi’s (and Takashi’s) mixing equilibrium.

We now know that all three strategies must be used in the equilibrium
mixture. The question becomes when will all three strategies be used. The
players are interested in maximizing their payoffs, not mixing for mixing’s sake.
Yuichi is willing to randomize between Rock, Paper, and Scissors if and only if
all three options are equally attractive. (If Rock offered Yuichi a higher payoff
than either Paper or Scissors, then he should play Rock exclusively; but that
would not be an equilibrium.) Thus, the special case when all three strategies
give Yuichi the same expected payoff is what defines Takashi’s equilibrium
mixture.

Let us suppose that Takashi uses the following mixing rule:

p = probability that Takashi casts paper;
q = probability that Takashi casts scissors;
1—(p + q) = probability that Takashi casts rock.

Then if Yuichi plays rock, he will fall behind five steps if Takashi plays paper (p)
and win one step if Takashi plays scissors (q), for a net payoff of-5p + q. In the
same way, Yuichi would get the following payoffs from each of his strategies:

Rock:-5p + 1q + 0(1—(p + q)) =-5p + q
Scissors: 2p + 0g—1(1—(p + q)) = 3p + q-1
Paper: Op—2q + 5(1—(p + q)) =-5p-7q + 5

Yuichi will find the three options equally attractive only when

-5p+q=3p +q-1=-5p-7q +5

Solving these equations reveals: p = 1/8, ¢ = 5/8, and (1-p—q) = 2/8.

This defines Takashi’s equilibrium mixture. The game is symmetric, so
Yuichi will randomize according to the same probabilities.

Note that when both Yuichi and Takashi use their equilibrium mixture, their
expected payoff from each strategy is zero. While this is not a general feature of



mixed strategy outcomes, it is always true for symmetric zero-sum games. There
is no reason why Yuichi should be favored over Takashi, or vice versa.

In chapter 14, “Fooling All the People Some of the Time: The Las Vegas
Slots” offers another case study on choice and chance.



