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BIG	GAME	OF	COORDINATION
	

Fred	 and	 Barney	 are	 Stone	 Age	 rabbit	 hunters.	 One	 evening,	 while
carousing,	 they	 happen	 to	 engage	 in	 some	 shop	 talk.	 As	 they	 exchange
information	 and	 ideas,	 they	 realize	 that	 by	 cooperating	 they	 could	 hunt	much
bigger	game,	 such	as	 stag	or	bison.	One	person	on	his	own	cannot	expect	any
success	hunting	either	stag	or	bison.	But	done	 jointly,	each	day’s	stag	or	bison
hunting	is	expected	to	yield	six	times	as	much	meat	as	a	day’s	rabbit	hunting	by
one	person.	Cooperation	promises	great	advantage:	each	hunter’s	share	of	meat
from	a	big-game	hunt	is	three	times	what	he	can	get	hunting	rabbits	on	his	own.

The	two	agree	to	go	big-game	hunting	together	the	following	day	and	return
to	 their	 respective	caves.	Unfortunately,	 they	caroused	 too	well,	and	both	have
forgotten	whether	they	decided	to	go	after	stag	or	bison.	The	hunting	grounds	for
the	 two	 species	 are	 in	opposite	 directions.	There	were	no	 cell	 phones	 in	 those
days,	and	 this	was	before	 the	 two	became	neighbors,	 so	one	could	not	quickly
visit	 the	 other’s	 cave	 to	 ascertain	where	 to	 go.	 Each	would	 have	 to	make	 the
decision	the	next	morning	in	isolation.

Therefore	 the	 two	 end	 up	 playing	 a	 simultaneous-move	 game	 of	 deciding
where	 to	 go.	 If	 we	 call	 each	 hunter’s	 quantity	 of	 meat	 from	 a	 day’s	 rabbit
hunting	1,	then	the	share	of	each	from	successful	coordination	in	hunting	either
stag	or	bison	is	3.	So	the	payoff	table	of	the	game	is	as	shown	here:



	
This	game	differs	from	the	prisoners’	dilemma	of	the	previous	chapter	in	many
ways.	Let	us	focus	on	one	crucial	difference.	Fred’s	best	choice	depends	on	what
Barney	 does,	 and	 vice	 versa.	 For	 neither	 player	 is	 there	 a	 strategy	 that	 is	 best
regardless	 of	what	 the	other	 does;	 unlike	 in	 the	prisoners’	 dilemma,	 this	 game
has	no	dominant	strategies.	So	each	player	has	to	think	about	the	other’s	choice
and	figure	out	his	own	best	choice	in	light	of	that.

Fred’s	 thinking	goes	as	 follows:	“If	Barney	goes	 to	 the	grounds	where	 the
stags	are,	then	I	will	get	my	share	of	the	large	catch	if	I	go	there	too,	but	nothing
if	I	go	to	the	bison	grounds.	If	Barney	goes	to	the	bison	grounds,	things	are	the
other	way	around.	Rather	 than	 take	 the	risk	of	going	 to	one	of	 these	areas	and
finding	that	Barney	has	gone	to	the	other,	should	I	go	by	myself	after	rabbits	and
make	sure	of	my	usual,	albeit	small,	quantity	of	meat?	In	other	words,	should	I
take	1	for	sure	instead	of	risking	either	3	or	nothing?	It	depends	on	what	I	think
Barney	is	 likely	 to	do,	so	 let	me	put	myself	 in	his	shoes	(bare	feet?)	and	think
what	he	is	thinking.	Oh,	he	is	wondering	what	I	am	likely	to	do	and	is	trying	to
put	 himself	 in	 my	 shoes!	 Is	 there	 any	 end	 to	 this	 circular	 thinking	 about
thinking?”

SQUARING	THE	CIRCLE
	

John	 Nash’s	 beautiful	 equilibrium	 was	 designed	 as	 a	 theoretical	 way	 to
square	just	such	circles	of	thinking	about	thinking	about	other	people’s	choices
in	games	of	strategy.*	The	idea	is	 to	look	for	an	outcome	where	each	player	in
the	 game	 chooses	 the	 strategy	 that	 best	 serves	 his	 or	 her	 own	 interest,	 in
response	 to	 the	 other’s	 strategy.	 If	 such	 a	 configuration	 of	 strategies	 arises,
neither	player	has	any	reason	to	change	his	choice	unilaterally.	Therefore,	this	is
a	potentially	 stable	outcome	of	a	game	where	 the	players	make	 individual	and
simultaneous	choices	of	strategies.	We	begin	by	illustrating	the	idea	with	some



examples	 of	 it	 in	 action.	Later	 in	 this	 chapter	we	 discuss	 how	well	 it	 predicts
outcomes	 in	 various	 games;	 we	 find	 reasons	 for	 cautious	 optimism	 and	 for
making	Nash	equilibrium	a	starting	point	of	the	analysis	of	almost	all	games.

Let	 us	 develop	 the	 concept	 by	 considering	 a	 more	 general	 version	 of	 the
pricing	game	between	Rainbow’s	End	and	B.	B.	Lean.	In	chapter	3	we	allowed
each	company	 the	choice	of	 just	 two	prices	 for	 the	shirt,	namely	$80	and	$70.
We	also	recognized	the	strength	of	the	temptation	for	each	to	cut	the	price.	Let
us	therefore	allow	more	choices	in	a	lower	range,	going	in	$1	steps	from	$42	to
$38.†	 In	 the	 earlier	 example,	when	both	 charge	$80,	 each	 sells	 1,200	 shirts.	 If
one	of	them	cuts	its	price	by	$1	while	the	other	holds	its	price	unchanged,	then
the	price	cutter	gains	100	customers,	80	of	whom	shift	from	the	other	firm	and
20	of	whom	shift	from	some	other	firm	that	is	not	a	part	of	this	game	or	decide
to	buy	a	shirt	when	they	would	otherwise	not	have	done	so.	If	both	firms	reduce
their	price	by	$1,	existing	customers	stay	put,	but	each	gains	20	new	ones.	So
when	both	firms	charge	$42	instead	of	$80,	each	gains	38	×	20	=	760	customers
above	the	original	1,200.	Then	each	sells	1,960	shirts	and	makes	a	profit	of	(42	×
20)	 ×	 1,960	 =	 43,120	 dollars.	 Doing	 similar	 calculations	 for	 the	 other	 price
combinations,	we	have	the	game	table	below.

	
The	table	may	seem	daunting	but	is	in	fact	easy	to	construct	using	Microsoft

Excel	or	any	other	spreadsheet	program.

TRIP	TO	THE	GYM	NO.	2
	
Try	your	hand	at	constructing	this	table	in	Excel.

	



Best	Responses
	

Consider	the	thinking	of	RE’s	executives	in	charge	of	setting	prices.	(From
now	 on,	 we	 will	 simply	 say	 “RE’s	 thinking,”	 and	 similarly	 for	 BB.)	 If	 RE
believes	 that	 BB	 is	 choosing	 $42,	 then	 RE’s	 profits	 from	 choosing	 various
possible	 prices	 are	 given	 by	 the	 numbers	 in	 the	 southwest	 corners	 of	 the	 first
column	 of	 profits	 in	 the	 above	 table.	 Of	 those	 five	 numbers,	 the	 highest	 is
$43,260,	corresponding	to	RE’s	price	$41.	Therefore	this	is	RE’s	“best	response”
to	BB’s	choice	of	$42.	Similarly,	RE’s	best	response	is	$40	if	it	believes	that	BB
is	 choosing	 $41,	 $40,	 or	 $39,	 and	 $39	 if	 it	 believes	 BB	 is	 choosing	 $38.	We
show	these	best-response	profit	numbers	in	bold	italics	for	clarity.	We	also	show
BB’s	best	 responses	 to	 the	various	possible	prices	of	RE,	using	bold,	 italicized
numbers	in	the	northeast	corners	of	the	appropriate	cells.

Before	proceeding,	we	must	make	two	remarks	about	best	responses.	First,
the	 term	 itself	 requires	 clarification.	 The	 two	 firms’	 choices	 are	 simultaneous.
Therefore,	unlike	the	situation	in	chapter	2,	each	firm	is	not	observing	the	other’s
choice	 and	 then	 “responding”	with	 its	 own	 best	 choice	 given	 the	 other	 firm’s
actual	choice.	Rather,	each	firm	is	formulating	a	belief	(which	may	be	based	on
thinking	 or	 experience	 or	 educated	 guesswork)	 about	 what	 the	 other	 firm	 is
choosing,	and	responding	to	this	belief.

Second,	note	 that	 it	 is	not	always	best	 for	one	 firm	 to	undercut	 the	other’s
price.	If	RE	believes	that	BB	is	choosing	$42,	RE	should	choose	a	lower	price,
namely	$41;	but	 if	RE	believes	that	BB	is	choosing	$39,	RE’s	best	response	is
higher,	namely	$40.	In	choosing	its	best	price,	RE	has	to	balance	two	opposing
considerations:	undercutting	will	increase	the	quantity	it	sells,	but	will	leave	it	a
lower	profit	margin	per	unit	 sold.	 If	RE	believes	 that	BB	is	setting	a	very	 low
price,	then	the	reduction	in	RE’s	profit	margin	from	undercutting	BB	may	be	too
big,	and	RE’s	best	choice	may	be	to	accept	a	lower	sales	volume	to	get	a	higher
profit	margin	on	each	shirt.	In	the	extreme	case	where	RE	thinks	BB	is	pricing	at
cost,	namely	$20,	matching	this	price	will	yield	RE	zero	profit.	RE	does	better	to
choose	a	higher	price,	keeping	some	loyal	customers	and	extracting	some	profit
from	them.

Nash	Equilibrium
	

Now	return	to	the	table	and	inspect	the	best	responses.	One	fact	immediately
stands	out:	one	cell,	namely	the	one	where	each	firm	charges	$40,	has	both	of	its
numbers	in	bold	italics,	yielding	a	profit	of	$40,000	to	each	firm.	If	RE	believes



that	BB	 is	 choosing	 the	 price	 of	 $40,	 then	 its	 own	best	 price	 is	 $40,	 and	vice
versa.	If	the	two	firms	choose	to	price	their	shirts	at	$40	each,	the	beliefs	of	each
about	 the	other’s	price	are	confirmed	by	the	actual	outcome.	Then	there	would
be	no	reason	for	one	firm	to	change	its	price	if	 the	truth	about	 the	other	firm’s
choice	 were	 somehow	 revealed.	 Therefore	 these	 choices	 constitute	 a	 stable
configuration	in	the	game.

Such	an	outcome	in	a	game,	where	the	action	of	each	player	is	best	for	him
given	 his	 beliefs	 about	 the	 other’s	 action,	 and	 the	 action	 of	 each	 is	 consistent
with	 the	 other’s	 beliefs	 about	 it,	 neatly	 squares	 the	 circle	 of	 thinking	 about
thinking.	Therefore	it	has	a	good	claim	to	be	called	a	resting	point	of	the	players’
thought	processes,	or	an	equilibrium	of	the	game.	Indeed,	this	is	just	a	definition
of	Nash	equilibrium.

To	highlight	the	Nash	equilibrium,	we	shade	its	cell	in	gray	and	will	do	the
same	in	all	the	game	tables	that	follow.

The	price-setting	game	in	chapter	3,	with	just	two	price	choices	of	$80	and
$70,	 was	 a	 prisoners’	 dilemma.	 The	 more	 general	 game	 with	 several	 price
choices	 shares	 this	 feature.	 If	 both	 firms	 could	 make	 a	 credible,	 enforceable
agreement	to	collude,	they	could	both	charge	prices	considerably	higher	than	the
Nash	equilibrium	price	of	$40,	and	this	would	yield	larger	profits	to	both.	As	we
saw	in	chapter	3,	a	common	price	of	$80	gives	each	of	them	$72,000,	as	opposed
to	 only	 $40,000	 in	 the	Nash	 equilibrium.	The	 result	 should	 impress	 upon	 you
how	consumers	can	suffer	if	an	industry	is	a	monopoly	or	a	producers’	cartel.

In	 the	 above	 example,	 the	 two	 firms	 were	 symmetrically	 situated	 in	 all
relevant	matters	of	costs	and	 in	 the	quantity	sold	for	each	combination	of	own
and	 rival	 prices.	 In	 general	 this	 need	 not	 be	 so,	 and	 in	 the	 resulting	 Nash
equilibrium	the	two	firms’	prices	can	be	different.	For	those	of	you	who	want	to
acquire	 a	 better	 grasp	 of	 the	 methods	 and	 the	 concepts,	 we	 offer	 this	 as	 an
“exercise”;	casual	readers	should	feel	free	to	peek	at	the	answer	in	the	workouts.

TRIP	TO	THE	GYM	NO.	3
	
Suppose	Rainbow’s	End	 locates	 a	 cheaper	 source	 for	 its	 shirts,	 so	 its
cost	 per	 shirt	 goes	 down	 from	 $20	 to	 $11.60,	 while	 B.	 B.	 Lean’s	 cost
remains	 at	 $20.	 Recalculate	 the	 payoff	 table	 and	 find	 the	 new	 Nash
equilibrium.

	

The	pricing	game	has	many	other	features,	but	they	are	more	complex	than



the	material	so	far.	Therefore	we	postpone	them	to	a	position	later	in	this	chapter.
To	conclude	this	section,	we	make	a	few	general	remarks	about	Nash	equilibria.

Does	 every	game	have	a	Nash	equilibrium?	The	answer	 is	 essentially	yes,
provided	we	generalize	 the	concept	of	 actions	or	 strategies	 to	 allow	mixing	of
moves.	This	was	Nash’s	 famous	 theorem.	We	will	 develop	 the	 idea	of	mixing
moves	 in	 the	 next	 chapter.	 Games	 that	 have	 no	Nash	 equilibrium,	 even	when
mixing	is	allowed,	are	so	complex	or	esoteric	that	we	can	safely	leave	them	to
very	advanced	treatments	of	game	theory.

Is	Nash	equilibrium	a	good	solution	for	simultaneous-move	games?	We	will
discuss	some	arguments	and	evidence	bearing	on	this	issue	later	in	this	chapter,
and	our	answer	will	be	a	guarded	yes.

Does	 every	 game	have	 a	 unique	Nash	 equilibrium?	No.	 In	 the	 rest	 of	 this
chapter	we	will	look	at	some	important	examples	of	games	with	multiple	Nash
equilibria	and	discuss	the	new	issues	they	raise.

Which	Equilibrium?
	

Let	us	try	Nash’s	theory	on	the	hunting	game.	Finding	best	responses	in	the
hunting	game	is	easy.	Fred	should	simply	make	the	same	choice	that	he	believes
Barney	is	choosing.	Here	is	the	result.

	
So	 the	 game	 has	 three	 Nash	 equilibria.*	 Which	 of	 these	 will	 emerge	 as	 the
outcome?	Or	will	 the	two	fail	 to	reach	any	of	 the	equilibria	at	all?	The	idea	of
Nash	 equilibrium	 does	 not	 by	 itself	 give	 the	 answers.	 Some	 additional	 and
different	consideration	is	needed.

If	Fred	and	Barney	had	met	at	the	stag	party	of	a	mutual	friend,	that	might
make	 the	 choice	 of	 Stag	more	 prominent	 in	 their	 minds.	 If	 the	 ritual	 in	 their
society	is	that	as	the	head	of	the	family	sets	out	for	the	day’s	hunting	he	calls	out



in	farewell,	“Bye,	son,”	the	choice	of	Bison	might	be	prominent.	But	if	the	ritual
is	for	the	family	to	call	out	in	farewell	“Be	safe,”	the	prominence	might	attach	to
the	safer	choice	that	guarantees	some	meat	regardless	of	what	the	other	chooses,
namely	rabbit	hunting.

But	what,	precisely,	constitutes	“prominence”?	One	strategy,	say	Stag,	may
be	prominent	in	Fred’s	mind,	but	that	is	not	enough	for	him	to	make	that	choice.
He	must	 ask	 himself	whether	 the	 same	 strategy	 is	 also	 prominent	 for	Barney.
And	that	in	turn	involves	asking	whether	Barney	will	think	it	prominent	to	Fred.
Selecting	 among	 multiple	 Nash	 equilibria	 requires	 resolution	 of	 a	 similar
problem	 of	 thinking	 about	 thinking	 as	 does	 the	 concept	 of	 Nash	 equilibrium
itself.

To	square	the	circle,	 the	“prominence”	must	be	a	multilevel	back-and-forth
concept.	 For	 the	 equilibrium	 to	 be	 selected	 successfully	 when	 the	 two	 are
thinking	and	acting	in	isolation,	it	must	be	obvious	to	Fred	that	it	is	obvious	to
Barney	 that	 it	 is	obvious	 to	Fred…that	 is	 the	 right	choice.	 If	an	equilibrium	 is
obvious	 ad	 infinitum	 in	 this	way,	 that	 is,	 if	 the	 players’	 expectations	 converge
upon	it,	we	call	it	a	focal	point.	The	development	of	this	concept	was	just	one	of
Thomas	Schelling’s	many	pioneering	contributions	to	game	theory.

Whether	 a	 game	 has	 a	 focal	 point	 can	 depend	 on	 many	 circumstances,
including	 most	 notably	 the	 players’	 common	 experiences,	 which	 may	 be
historical,	cultural,	linguistic,	or	purely	accidental.	Here	are	some	examples.

We	 begin	 with	 one	 of	 Schelling’s	 classics.	 Suppose	 you	 are	 told	 to	 meet
someone	in	New	York	City	on	a	specific	day	but	without	being	told	where	or	at
what	time.	You	don’t	even	know	who	the	other	person	is,	so	you	cannot	contact
him/her	in	advance	(but	you	are	told	how	you	would	identify	each	other	if	and
when	 you	 do	 meet).	 You	 are	 also	 told	 that	 the	 other	 person	 has	 been	 given
identical	instructions.

Your	chances	of	success	might	seem	slim;	New	York	City	is	huge,	and	the
day	is	 long.	But	 in	fact	people	 in	 this	situation	succeed	surprisingly	often.	The
time	 is	 simple:	 noon	 is	 the	 obvious	 focal	 point;	 expectations	 converge	 on	 it
almost	 instinctively.	 The	 location	 is	 harder,	 but	 there	 are	 just	 a	 few	 landmark
locations	 on	which	 expectations	 can	 converge.	This	 at	 least	 narrows	down	 the
choices	considerably	and	improves	the	chances	of	a	successful	meeting.

Schelling	conducted	experiments	in	which	the	subjects	were	from	the	Boston
or	 New	 Haven	 areas.	 In	 those	 days	 they	 traveled	 to	 New	 York	 by	 train	 and
arrived	 at	Grand	Central	 Station;	 for	 them	 the	 clock	 in	 that	 station	was	 focal.
Nowadays,	many	people	would	think	the	Empire	State	Building	is	a	focal	point
because	 of	 the	movie	Sleepless	 in	 Seattle	 (or	An	 Affair	 to	 Remember);	 others
would	think	Times	Square	the	obvious	“crossroads	of	the	world.”



One	 of	 us	 (Nalebuff)	 performed	 this	 experiment	 in	 an	 ABC	 Primetime
program	 titled	 Life:	 The	 Game.1	 Six	 pairs	 of	 mutual	 strangers	 were	 taken	 to
different	 parts	 of	 New	York	 and	 told	 to	 find	 others	 about	 whom	 they	 had	 no
information	except	 that	 the	other	pair	would	be	looking	for	 them	under	similar
conditions.	 The	 discussions	 within	 each	 pair	 followed	 Schelling’s	 reasoning
remarkably	well.	Each	thought	about	what	 they	believed	would	be	 the	obvious
places	to	meet	and	about	what	others	would	think	they	were	thinking:	each	team,
say	 team	A,	 in	 its	 thinking	 recognized	 the	 fact	 that	 another	 team,	 say	B,	was
simultaneously	 thinking	about	what	was	obvious	 to	A.	Eventually,	 three	of	 the
pairs	went	to	the	Empire	State	Building	and	the	other	three	to	Times	Square.	All
chose	noon	for	the	time.	There	remained	some	further	issues	to	be	sorted	out:	the
Empire	State	Building	has	observation	decks	on	two	different	levels,	and	Times
Square	is	a	big	place.	But	with	a	little	ingenuity,	including	a	display	of	signs,	all
six	pairs	were	successful	in	meeting.*

What	 is	 essential	 for	 success	 is	 not	 that	 the	 place	 is	 obvious	 to	 you,	 or
obvious	to	the	other	team,	but	that	it	is	obvious	to	each	that	it	is	obvious	to	the
others	that…And,	if	the	Empire	State	Building	has	this	property,	then	each	team
has	to	go	there	even	though	it	may	be	inconvenient	for	them	to	get	there,	because
it	is	the	only	place	each	can	expect	the	other	team	to	be.	If	there	were	just	two
teams,	 one	 of	 them	 might	 think	 the	 Empire	 State	 Building	 the	 obvious	 focal
point	 and	 the	 other	 might	 think	 Times	 Square	 equally	 obvious;	 then	 the	 two
would	fail	to	meet.

Professor	David	Kreps	of	Stanford	Business	School	conducted	the	following
experiment	 in	his	class.	Two	students	were	chosen	 to	play	 the	game,	and	each
had	 to	make	his/her	 choice	without	 any	possibility	of	 communication	with	 the
other.	Their	job	was	to	divide	up	a	list	of	cities	between	them.	One	student	was
assigned	 Boston,	 and	 the	 other	 was	 assigned	 San	 Francisco	 (and	 these
assignments	 were	 public	 so	 that	 each	 knew	 the	 other’s	 city).	 Each	 was	 then
given	a	list	of	nine	other	U.S.	cities—Atlanta,	Chicago,	Dallas,	Denver,	Houston,
Los	Angeles,	New	York,	Philadelphia,	and	Seattle—and	asked	to	choose	a	subset
of	 these	 cities.	 If	 their	 choices	 resulted	 in	 a	 complete	 and	 nonoverlapping
division,	 both	 got	 a	 prize.	But	 if	 their	 combined	 list	missed	 a	 city	 or	 had	 any
duplicates,	then	they	both	got	nothing.

How	 many	 Nash	 equilibria	 does	 this	 game	 have?	 If	 the	 student	 assigned
Boston	 chooses,	 say,	 Atlanta	 and	 Chicago,	 while	 the	 student	 assigned	 San
Francisco	 chooses	 the	 rest	 (Dallas,	Denver,	Houston,	Los	Angeles,	New	York,
Philadelphia,	and	Seattle),	 that	 is	a	Nash	equilibrium:	given	 the	choice	of	one,
any	change	in	the	choice	of	the	other	will	create	either	an	omission	or	an	overlap
and	would	lower	the	payoff	 to	the	deviator.	The	same	argument	applies	if,	say,



one	chooses	Dallas,	Los	Angeles,	and	Seattle	while	the	other	chooses	the	other
six.	 In	 other	 words,	 there	 are	 as	 many	 Nash	 equilibria	 as	 there	 are	 ways	 of
dividing	up	 the	 list	of	nine	numbers	 into	 two	distinct	 subsets.	There	are	29,	or
512,	such	ways;	therefore	the	game	has	a	huge	number	of	Nash	equilibria.

Can	 the	players’	expectations	converge	 to	create	a	 focal	point?	When	both
players	were	Americans	or	long-time	U.S.	residents,	over	80	percent	of	the	time
they	chose	the	division	geographically;	the	student	assigned	Boston	chose	all	the
cities	east	of	the	Mississippi	and	the	student	assigned	San	Francisco	chose	those
west	of	 the	Mississippi.*	Such	coordination	was	much	 less	 likely	when	one	or
both	 students	 were	 non-U.S.	 residents.	 Thus	 nationality	 or	 culture	 can	 help
create	 a	 focal	 point.	 When	 Kreps’s	 pairs	 lacked	 such	 common	 experience,
choices	were	 sometimes	made	alphabetically,	but	even	 then	 there	was	no	clear
dividing	 point.	 If	 the	 total	 number	 of	 cities	was	 even,	 an	 equal	 split	might	 be
focal,	but	with	nine	cities,	that	is	not	possible.	Thus	one	should	not	assume	that
players	will	 always	 find	 a	way	 to	 select	 one	 of	multiple	Nash	 equilibria	 by	 a
convergence	of	expectations;	failure	to	find	a	focal	point	is	a	distinct	possibility.†

Next,	 suppose	each	of	 two	players	 is	asked	 to	choose	a	positive	 integer.	 If
both	 choose	 the	 same	 number,	 both	 get	 a	 prize.	 If	 the	 two	 choose	 different
numbers,	neither	gets	anything.	The	overwhelmingly	 frequent	choice	 is	1:	 it	 is
the	first	among	the	whole	numbers	(positive	integers),	it	is	the	smallest,	and	so
on;	 therefore,	 it	 is	 focal.	 Here	 the	 reason	 for	 its	 salience	 is	 basically
mathematical.

Schelling	 gives	 the	 example	 of	 two	 or	 more	 people	 who	 have	 gone	 to	 a
crowded	 place	 together	 and	 get	 separated.	 Where	 should	 each	 go	 in	 the
expectation	of	finding	the	other?	If	the	place,	say	a	department	store	or	a	railway
station,	has	a	Lost	and	Found	window,	it	has	a	good	claim	to	be	focal.	Here	the
reason	 for	 its	 salience	 is	 linguistic.	 Sometimes	meeting	 places	 are	 deliberately
created	to	guarantee	a	convergence	of	expectations;	for	example,	many	railway
stations	in	Germany	and	Switzerland	have	a	well-signposted	Treffpunkt	(meeting
point).

What	is	neat	about	the	game	of	meeting	is	not	just	that	the	two	players	find
each	other	but	 that	 the	 focal	point	ends	up	being	 relevant	 to	 so	many	strategic
interactions.	 Probably	 the	 most	 important	 is	 the	 stock	 market.	 John	 Maynard
Keynes,	arguably	the	twentieth	century’s	most	famous	economist,	explained	its
behavior	 by	 analogy	with	 a	 newspaper	 contest	 that	 was	 common	 in	 his	 time,
where	 a	 number	 of	 photographs	 of	 faces	 were	 presented,	 and	 readers	 had	 to
guess	which	face	 the	majority	of	other	voters	would	 judge	 the	most	beautiful.2
When	everyone	thinks	along	these	lines,	the	question	becomes	which	face	most



people	think	that	most	others	will	think	that	most	others	will	think…is	the	most
beautiful.	If	one	contestant	was	significantly	more	beautiful	 than	all	 the	others,
this	could	provide	the	necessary	focal	point.	But	the	reader’s	job	was	rarely	that
easy.	Imagine	instead	that	the	hundred	finalists	were	practically	indistinguishable
except	for	the	color	of	their	hair.	Of	the	hundred,	only	one	is	a	redhead.	Would
you	pick	the	redhead?

The	aim	becomes	not	to	make	any	absolute	judgment	of	beauty	but	to	find	a
focal	 point	 of	 this	 process	 of	 thinking.	How	do	we	 agree	 on	 that?	The	 reader
must	 figure	out	 the	 realized	 convention	without	 the	benefit	 of	 communication.
“Pick	the	most	beautiful”	might	be	the	stated	rule,	but	that	could	be	significantly
more	 difficult	 than	 picking	 the	 redhead,	 or	 the	 one	 with	 an	 interesting	 gap
between	 her	 two	 front	 teeth	 (Lauren	 Hutton)	 or	 the	 mole	 (Cindy	 Crawford).
Anything	 that	 distinguishes	 becomes	 a	 focal	 point	 and	 allows	 people’s
expectations	to	converge.	For	this	reason,	we	should	not	be	surprised	that	many
of	 the	world’s	 top	models	do	not	have	perfect	 features;	 rather,	 they	are	almost
perfect	but	have	some	interesting	flaw	that	gives	 their	 look	a	personality	and	a
focal	point.

Keynes	used	 the	beauty	contest	as	a	metaphor	 for	 the	stock	market,	where
each	 investor	wants	 to	 buy	 the	 stocks	 that	will	 rise	 in	 price,	which	means	 the
stocks	that	 investors,	 in	general,	 think	will	appreciate.	The	hot	stock	is	 the	one
that	 everyone	 thinks	 that	 everyone	 else	 thinks…is	 the	hot	 stock.	There	 can	be
different	reasons	why	different	sectors	or	stocks	become	hot	at	different	times—
a	well-publicized	initial	public	offering,	a	famous	analyst’s	recommendation,	and
so	on.	The	focal	point	concept	also	explains	the	attention	paid	to	round	numbers:
10,000	for	the	Dow,	or	2,500	for	the	Nasdaq.	These	indexes	are	just	values	of	a
specified	portfolio	of	stocks.	A	number	 like	10,000	does	not	have	any	intrinsic
meaning;	it	serves	as	a	focal	point	only	because	expectations	can	converge	more
easily	on	round	numbers.

The	point	of	all	this	is	that	equilibrium	can	easily	be	determined	by	whim	or
fad.	There	is	nothing	fundamental	that	guarantees	the	most	beautiful	contestant
will	be	chosen	or	the	best	stock	will	appreciate	the	fastest.	There	are	some	forces
that	work	in	the	right	direction.	High	forecast	earnings	are	similar	to	the	beauty
contestant’s	complexion—one	of	the	many	necessary	but	by	no	means	sufficient
conditions	needed	to	anchor	otherwise	arbitrary	whims	and	fads.

Many	mathematical	game	theorists	dislike	the	dependence	of	an	outcome	on
historical,	 cultural,	 or	 linguistic	 aspects	 of	 the	 game	 or	 on	 purely	 arbitrary
devices	like	round	numbers;	they	would	prefer	the	solution	be	determined	purely
by	the	abstract	mathematical	 facts	about	 the	game—the	number	of	players,	 the
strategies	 available	 to	 each,	 and	 the	 payoffs	 to	 each	 in	 relation	 to	 the	 strategy



choices	of	all.	We	disagree.	We	think	it	entirely	appropriate	that	the	outcome	of	a
game	played	by	humans	interacting	in	a	society	should	depend	on	the	social	and
psychological	aspects	of	the	game.

Think	of	 the	example	of	bargaining.	Here	 the	players’	 interests	seem	to	be
totally	conflicting;	a	larger	share	for	one	means	a	smaller	share	for	the	other.	But
in	many	negotiations,	 if	 the	 two	parties	 fail	 to	 agree,	 neither	will	 get	 anything
and	both	may	suffer	serious	damage,	as	happens	when	wage	bargaining	breaks
down	and	a	strike	or	a	lockout	ensues.	The	two	parties’	interests	are	aligned	to
the	extent	that	both	want	to	avoid	such	disagreement.	They	can	do	so	if	they	can
find	 a	 focal	 point,	 with	 the	 common	 expectation	 that	 neither	 will	 concede
anything	beyond	that	point.	That	is	why	a	50:50	split	is	so	often	observed.	It	is
simple	 and	 clear,	 it	 has	 the	 advantage	 of	 appearing	 fair,	 and,	 once	 such
considerations	get	a	foothold,	it	serves	for	the	convergence	of	expectations.

Consider	 the	 problem	 of	 excessive	 compensation	 of	 CEOs.	 Often	 a	 CEO
really	 cares	 about	 prestige.	 Whether	 the	 person	 gets	 paid	 $5	 million	 or	 $10
million	won’t	really	have	a	big	impact	on	the	person’s	life.	(That’s	easy	for	us	to
say	 from	 where	 we	 sit,	 where	 both	 numbers	 are	 quite	 abstract.)	 What’s	 the
meeting	 place	 that	 the	 CEOs	 care	 about?	 It	 is	 being	 better	 than	 average.
Everyone	wants	to	be	in	the	top	half.	They	all	want	to	meet	there.	The	problem	is
that	 this	 meeting	 spot	 only	 allows	 in	 half	 of	 the	 folks.	 But	 the	 way	 they	 get
around	 this	 is	 via	 escalating	 pay.	 Every	 firm	 pays	 its	 CEO	 above	 last	 year’s
average,	so	everyone	can	think	they	have	an	above-average	CEO.	The	end	result
is	wildly	escalating	CEO	salaries.	To	solve	 the	problem,	we	need	 to	find	some
other	 focal	meeting	point.	For	example,	historically	CEOs	got	prestige	 in	 their
community	 via	 public	 service.	 Competing	 in	 that	 dimension	 was	 good	 all
around.	The	 current	 focal	 point	 on	pay	was	 created	by	Business	Week	 surveys
and	compensation	consultants.	Changing	it	won’t	be	easy.

The	issue	of	fairness	is	also	one	of	choosing	a	focal	point.	The	Millennium
Development	Goals	 and	 Jeff	Sachs’s	 book	The	End	of	Poverty	 emphasize	 that
contributing	1	percent	of	gross	domestic	product	(GDP)	to	development	will	end
poverty	by	2025.	The	key	point	 here	 is	 that	 the	 focal	 point	 of	 contributions	 is
based	on	a	percentage	of	 income,	not	 an	absolute	 amount.	Thus	 rich	countries
have	a	bigger	obligation	to	contribute	than	the	less	rich.	The	apparent	fairness	of
this	 can	 contribute	 to	 the	 convergence	 of	 expectations.	Whether	 the	 promised
funds	will	actually	materialize	remains	to	be	seen.

BATTLES	AND	CHICKENS
	



In	 the	 hunting	 game,	 the	 two	 players’	 interests	 are	 perfectly	 aligned;	 both
prefer	 one	 of	 the	 big-game	 equilibria,	 and	 the	 only	 question	 is	 how	 they	 can
coordinate	their	beliefs	on	a	focal	point.	We	now	turn	to	two	other	games,	which
also	 have	 non-unique	 Nash	 equilibria,	 but	 have	 an	 element	 of	 conflicting
interests.	Each	leads	to	different	ideas	about	strategy.

Both	 of	 these	 games	 date	 from	 the	 1950s	 and	 have	 stories	 that	 fit	 those
times.	We	will	illustrate	them	using	variants	of	the	game	between	our	Stone	Age
hunters,	Fred	and	Barney.	But	we	will	relate	the	original	sexist	stories	too,	partly
because	 they	 explain	 the	 names	 that	 have	 come	 to	 be	 attached	 to	 these	 games
and	partly	for	the	amusement	value	of	looking	back	on	the	quaint	thoughts	and
norms	of	old	times.

The	 first	 game	 is	 generically	 called	 battle	 of	 the	 sexes.	 The	 idea	 is	 that	 a
husband	 and	wife	 have	 different	 preferences	 in	movies,	 and	 the	 two	 available
choices	 are	 very	 different.	 The	 husband	 likes	 lots	 of	 action	 and	 fighting;	 he
wants	to	see	300.	The	wife	likes	three-handkerchief	weepies;	her	choice	is	Pride
&	Prejudice	(or	A	Beautiful	Mind).	But	both	prefer	watching	either	movie	in	the
other’s	company	to	watching	any	movie	on	their	own.

In	 the	 hunting	 version,	 remove	 the	Rabbit	 choice	 and	 keep	 only	 Stag	 and
Bison.	 But	 suppose	 Fred	 prefers	 stag	meat	 and	 rates	 the	 outcome	 of	 a	 jointly
conducted	 stag	 hunt	 4	 instead	 of	 3,	while	Barney	 has	 the	 opposite	 preference.
The	revised	game	payoff	table	is	as	shown	below.

	
As	usual,	best	 responses	are	shown	in	bold	 italics.	We	see	at	once	 that	 the

game	has	two	Nash	equilibria,	one	where	both	choose	Stag,	and	the	other	where
both	choose	Bison.	Both	players	prefer	to	have	either	equilibrium	outcome	than
to	 hunt	 alone	 in	 one	 of	 the	 two	 nonequilibrium	 outcomes.	 But	 they	 have
conflicting	preferences	over	the	two	equilibria:	Fred	would	rather	be	in	the	Stag
equilibrium	and	Barney	in	the	Bison	equilibrium.

How	might	 one	 or	 the	 other	 outcome	 be	 sustained?	 If	 Fred	 can	 somehow
convey	 to	 Barney	 that	 he,	 Fred,	 is	 credibly	 and	 unyieldingly	 determined	 to
choose	 Stag,	 then	 Barney	 must	 make	 the	 best	 of	 the	 situation	 by	 complying.



However,	Fred	faces	two	problems	in	using	such	a	strategy.
First,	 it	 requires	 some	method	of	 communication	before	 the	actual	 choices

are	made.	Of	 course,	 communication	 is	 usually	 a	 two-way	 process,	 so	Barney
might	try	the	same	strategy.	Fred	would	ideally	like	to	have	a	device	that	will	let
him	 send	 messages	 but	 not	 receive	 them.	 But	 that	 is	 not	 without	 its	 own
problems;	 how	 can	 Fred	 be	 sure	 that	Barney	 has	 received	 and	 understood	 the
message?

Second,	 and	 more	 important,	 is	 the	 problem	 of	 credibly	 conveying	 an
unyielding	determination.	This	can	be	faked,	and	Barney	might	put	it	to	the	test
by	defying	Fred	and	choosing	Bison,	which	would	leave	Fred	with	a	pair	of	bad
choices:	give	in	and	choose	Bison,	which	leads	to	humiliation	and	destruction	of
reputation,	or	go	ahead	with	 the	original	 choice	of	Stag,	which	means	missing
the	opportunity	of	the	joint	hunt,	getting	zero	meat,	and	ending	up	with	a	hungry
family.

In	 chapter	 7	 we	 will	 examine	 some	 ways	 that	 Fred	 could	 make	 his
determination	 credible	 and	 achieve	 his	 preferred	 outcome.	 But	 we	 will	 also
examine	some	ways	that	Barney	could	undermine	Fred’s	commitment.

If	 they	 have	 two-way	 communication	 before	 the	 game	 is	 played,	 this	 is
essentially	 a	game	of	negotiation.	The	 two	prefer	different	outcomes,	but	both
prefer	some	agreement	to	complete	disagreement.	If	 the	game	is	repeated,	they
may	be	able	to	agree	to	a	compromise—for	example,	alternate	between	the	two
grounds	on	alternate	days.	Even	in	a	single	play,	they	may	be	able	to	achieve	a
compromise	in	the	sense	of	a	statistical	average	by	tossing	a	coin	and	choosing
one	 equilibrium	 if	 it	 comes	up	heads	 and	 the	other	 equilibrium	 if	 it	 comes	up
tails.	We	will	devote	an	entire	chapter	to	the	important	subject	of	negotiation.

The	 second	 classic	 game	 is	 called	 chicken.	 In	 the	 standard	 telling	 of	 this
story,	two	teenagers	drive	toward	each	other	on	a	straight	road,	and	the	first	one
to	 swerve	 to	 avoid	 a	 collision	 is	 the	 loser,	 or	 chicken.	 If	 both	 keep	 straight,
however,	they	crash,	and	that	is	the	worst	outcome	for	both.	To	create	a	game	of
chicken	 out	 of	 the	 hunting	 situation,	 remove	 the	 Stag	 and	 Bison	 choices,	 but
suppose	there	are	two	areas	for	rabbit	hunting.	One,	located	to	the	south,	is	large
but	sparse;	both	can	go	there	and	each	will	get	1	of	meat.	The	other,	located	to
the	 north,	 is	 plentiful	 but	 small.	 If	 just	 one	 hunter	 goes	 there,	 he	 can	 get	 2	 of
meat.	 If	 both	 go	 there,	 they	will	merely	 interfere	 and	 start	 fighting	with	 each
other	and	get	nothing.	If	one	goes	north	and	the	other	goes	south,	 the	one	who
goes	north	will	enjoy	his	2	of	meat.	The	one	going	south	will	get	his	1.	But	his
and	his	family’s	feeling	of	envy	for	the	other	who	comes	back	at	the	end	of	the
day	with	2	will	reduce	his	enjoyment,	so	we	will	give	him	a	payoff	of	only	1/2
instead	of	1.	This	yields	the	game	payoff	table	shown	below.



	
As	usual,	best	responses	are	shown	in	bold	italics.	We	see	at	once	that	the	game
has	two	Nash	equilibria,	with	one	player	going	north	and	the	other	going	south.
The	 latter	 is	 then	 the	 chicken;	 he	 has	 made	 the	 best	 of	 a	 bad	 situation	 in
responding	to	the	other’s	choice	of	North.

Both	games,	the	battle	of	the	sexes	and	chicken,	have	a	mixture	of	common
and	 conflicting	 interests:	 in	 both,	 the	 two	 players	 agree	 in	 preferring	 an
equilibrium	outcome	to	a	nonequilibrium	outcome,	but	they	disagree	as	to	which
equilibrium	is	better.	This	conflict	is	sharper	in	chicken,	in	the	sense	that	if	each
player	 tries	 to	 achieve	 his	 preferred	 equilibrium,	 both	 end	 up	 in	 their	 worst
outcome.

Methods	for	selecting	one	of	the	equilibria	in	chicken	are	similar	to	those	in
the	battle	of	the	sexes.	One	of	the	players,	say	Fred,	may	make	a	commitment	to
choosing	his	preferred	strategy,	namely	going	north.	Once	again,	it	is	important
to	make	this	commitment	credible	and	to	ensure	that	the	other	player	knows	it.
We	will	consider	commitments	and	their	credibility	more	fully	in	chapters	6	and
7.

There	 is	 also	 the	 possibility	 of	 compromise	 in	 chicken.	 In	 a	 repeated
interaction	Fred	and	Barney	may	agree	to	alternate	between	North	and	South;	in
a	single	play,	 they	may	use	a	coin	 toss	or	other	 randomizing	method	 to	decide
who	gets	North.

Finally,	chicken	shows	a	general	point	about	games:	even	though	the	players
are	 perfectly	 symmetric	 as	 regards	 their	 strategies	 and	 payoffs,	 the	 Nash
equilibria	of	 the	game	can	be	 asymmetric,	 that	 is,	 the	players	 choose	different
actions.

A	LITTLE	HISTORY
	

In	 the	course	of	developing	examples	 in	 this	chapter	and	 the	one	before	 it,
we	 have	 introduced	 several	 games	 that	 have	 become	 classics.	 The	 prisoners’
dilemma,	of	course,	everyone	knows.	But	the	game	of	the	two	Stone	Age	hunters



trying	to	meet	is	almost	equally	well	known.	Jean-Jacques	Rousseau	introduced
it	in	an	almost	identical	setting—of	course	he	did	not	have	Flintstones	characters
to	add	color	to	the	story.

The	 hunters’	 meeting	 game	 differs	 from	 the	 prisoners’	 dilemma	 because
Fred’s	best	response	is	to	take	the	same	action	as	Barney	does	(and	vice	versa),
whereas	in	a	prisoners’	dilemma	game	Fred	would	have	a	dominant	strategy	(just
one	action—for	example,	Rabbit—would	be	his	best	choice	regardless	of	what
Barney	does)	and	so	would	Barney.	Another	way	to	express	the	difference	is	to
say	 that	 in	 the	 meeting	 game,	 Fred	 would	 go	 stag	 hunting	 if	 he	 had	 the
assurance,	 whether	 by	 direct	 communication	 or	 because	 of	 the	 existence	 of	 a
focal	 point,	 that	 Barney	 would	 also	 go	 stag	 hunting,	 and	 vice	 versa.	 For	 this
reason,	the	game	is	often	called	the	assurance	game.

Rousseau	 did	 not	 put	 his	 idea	 in	 precise	 gametheoretic	 language,	 and	 his
phrasing	 leaves	 his	 meaning	 open	 to	 different	 interpretations.	 In	 Maurice
Cranston’s	 translation,	 the	 large	 animal	 is	 a	 deer,	 and	 the	 statement	 of	 the
problem	 is	 as	 follows:	 “If	 it	 was	 a	 matter	 of	 hunting	 a	 deer,	 everyone	 well
realized	that	he	must	remain	faithfully	at	his	post;	but	if	a	hare	happened	to	pass
within	the	reach	of	one	of	them,	we	cannot	doubt	that	he	would	have	gone	off	in
pursuit	 of	 it	without	 scruple	 and,	 having	 caught	 his	 own	 prey,	 he	would	 have
cared	very	little	about	having	caused	his	companions	to	lose	theirs.”3	Of	course
if	 the	others	were	going	 for	 the	hare,	 then	 there	would	be	no	point	 in	any	one
hunter’s	attempting	the	deer.	So	the	statement	seems	to	imply	that	each	hunter’s
dominant	 strategy	 is	 to	 go	 after	 a	 hare,	 which	 makes	 the	 game	 a	 prisoners’
dilemma.	 However,	 the	 game	 is	 more	 commonly	 interpreted	 as	 an	 assurance
game,	where	each	hunter	prefers	to	join	the	stag	hunt	if	all	the	others	are	doing
likewise.

In	the	version	of	chicken	made	famous	by	the	movie	Rebel	Without	a	Cause,
two	teenagers	drive	their	cars	in	parallel	toward	a	cliff;	the	one	who	first	jumps
out	of	his	 car	 is	 the	chicken.	The	metaphor	of	 this	game	was	used	 for	nuclear
brinkmanship	by	Bertrand	Russell	and	others.	The	game	was	discussed	in	detail
by	 Thomas	 Schelling	 in	 his	 pioneering	 gametheoretic	 analysis	 of	 strategic
moves,	and	we	will	pick	this	back	up	in	chapter	6.

To	 the	 best	 of	 our	 knowledge,	 the	 battle	 of	 the	 sexes	 game	does	 not	 have
such	roots	 in	philosophy	or	popular	culture.	 It	appears	 in	 the	book	Games	and
Decisions	 by	 R.	Duncan	 Luce	 and	Howard	 Raiffa,	 an	 early	 classic	 on	 formal
game	theory.4

FINDING	NASH	EQUILIBRIA



	
How	can	we	 find	Nash	equilibrium	 for	 a	game?	 In	 a	 table,	 the	worst-case

method	is	cell-by-cell	inspection.	If	both	of	the	pay-off	entries	in	a	cell	are	best
responses,	the	strategies	and	payoffs	for	that	cell	constitute	a	Nash	equilibrium.
If	 the	 table	 is	 large,	 this	 procedure	 can	 get	 tedious.	But	God	made	 computers
precisely	 to	 rescue	 humans	 from	 the	 tedium	 of	 inspection	 and	 calculation.
Software	packages	to	find	Nash	equilibria	are	readily	available.5

Sometimes	there	are	shortcuts;	we	now	describe	one	that	is	often	useful.

Successive	Elimination
	

Return	 to	 the	pricing	game	between	Rainbow’s	End	and	B.	B.	Lean.	Here
again	is	the	table	of	payoffs:

	
RE	does	not	know	what	price	BB	is	choosing.	But	it	can	figure	out	what	price	or
prices	BB	is	not	choosing:	BB	will	never	set	 its	price	at	$42	or	$38.	There	are
two	 reasons	 (both	 of	which	 apply	 in	 our	 example,	 but	 in	 other	 situations	 only
one	may	apply).6

First,	 each	 of	 these	 strategies	 is	 uniformly	 worse	 for	 BB	 than	 another
available	strategy.	No	matter	what	it	thinks	RE	is	choosing,	$41	is	better	for	BB
than	$42,	 and	$39	 is	better	 than	$38.	To	 see	 this,	 consider	 the	$41	versus	$42
comparison;	the	other	is	similar.	Look	at	the	five	numbers	for	BB’s	profits	from
choosing	$41	(shaded	in	dark	gray)	versus	those	from	$42	(shaded	in	light	gray).
For	each	of	RE’s	five	possible	choices,	BB’s	profit	from	choosing	$42	is	smaller
than	that	from	choosing	$41:



43,120	<	43,260,
41,360	<	41,580,
39,600	<	39,900,
37,840	<	38,220,
36,080	<	36,540.

	

So	no	matter	what	BB	expects	RE	to	do,	BB	will	never	choose	$42,	and	RE	can
confidently	expect	BB	to	rule	out	the	$42	strategy,	and,	likewise,	$38.

When	one	strategy,	say	A,	is	uniformly	worse	for	a	player	than	another,	say
B,	we	say	that	A	is	dominated	by	B.	If	such	is	the	case,	that	player	will	never	use
A,	 although	 whether	 he	 uses	 B	 remains	 to	 be	 seen.	 The	 other	 player	 can
confidently	proceed	in	thinking	on	this	basis;	in	particular,	he	need	not	consider
playing	a	strategy	 that	 is	 the	best	 response	only	 to	A.	When	solving	 the	game,
we	can	remove	dominated	strategies	from	consideration.	This	reduces	the	size	of
the	game	table	and	simplifies	the	analysis.*

The	second	avenue	for	elimination	and	simplification	is	to	look	for	strategies
that	are	never	best	responses	to	anything	the	other	player	might	be	choosing.	In
this	example,	$42	is	never	BB’s	best	response	to	anything	RE	might	be	choosing
within	 the	range	we	are	considering.	So,	RE	can	confidently	 think,	“No	matter
what	BB	is	thinking	about	my	choice,	it	will	never	choose	$42.”

Of	 course,	 anything	 that	 is	 dominated	 is	 a	 never	 best	 response.	 It	 is	more
instructive	to	look	at	BB’s	option	to	price	at	$39.	This	can	almost	be	eliminated
for	being	a	never	best	response.	A	price	of	$39	is	only	a	best	response	to	an	RE
price	of	$38.	Once	we	know	that	$38	is	dominated,	then	we	can	conclude	that	a
BB	price	of	$39	will	never	be	a	best	response	to	anything	RE	will	ever	play.	The
advantage,	 then,	 of	 looking	 for	 never	 best	 responses	 is	 that	 you	 are	 able	 to
eliminate	strategies	that	are	not	dominated	but	would	still	never	be	chosen.

We	 can	 perform	 a	 similar	 analysis	 for	 the	 other	 player.	RE’s	 $42	 and	 $38
strategies	are	eliminated,	leaving	us	with	a	3-by-3	game	table:



	
In	 this	 simplified	 game,	 each	 firm	 has	 a	 dominant	 strategy,	 namely	 $40.
Therefore	our	Rule	2	(from	chapter	3)	indicates	that	as	a	solution	for	the	game.

The	$40	strategy	was	not	dominant	in	the	original	larger	game;	for	example,
if	RE	 thought	 that	BB	would	 charge	$42,	 then	 its	 profits	 from	 setting	 its	 own
price	at	$41,	namely	$43,260,	would	be	more	than	its	profits	from	choosing	$40,
namely	 $43,200.	 The	 elimination	 of	 some	 strategies	 can	 open	 up	 the	 way	 to
eliminate	more	in	a	second	round.	Here	just	two	rounds	sufficed	to	pin	down	the
outcome.	In	other	examples	it	may	take	more	rounds,	and	even	then	the	range	of
outcomes	may	be	narrowed	somewhat	but	not	all	the	way	to	uniqueness.

If	 successive	 elimination	 of	 dominated	 strategies	 (or	 never-best-response
strategies)	and	choice	of	dominant	strategies	does	lead	to	a	unique	outcome,	that
is	a	Nash	equilibrium.	When	this	works,	it	is	an	easy	way	to	find	Nash	equilibria.
Therefore	 we	 summarize	 our	 discussion	 of	 finding	 Nash	 equilibria	 into	 two
rules:

RULE	3:	Eliminate	 from	consideration	 any	dominated	 strategies	 and
strategies	 that	 are	 never	 best	 responses,	 and	 go	 on	 doing	 so
successively.

	

RULE	4:	Having	exhausted	the	simple	avenues	of	looking	for	dominant
strategies	or	ruling	out	dominated	ones,	next	search	all	the	cells	of	the
game	table	for	a	pair	of	mutual	best	responses	in	the	same	cell,	which	is
a	Nash	equilibrium	of	the	game.

	



GAMES	WITH	INFINITELY	MANY	STRATEGIES
	

In	each	of	the	versions	of	the	pricing	game	we	discussed	so	far,	we	allowed
each	firm	only	a	small	number	of	price	points:	only	$80	and	$70	 in	chapter	3,
and	only	between	$42	and	$38	in	$1	steps	in	this	chapter.	Our	purpose	was	only
to	 convey	 the	 concepts	of	 the	prisoners’	dilemma	and	Nash	 equilibrium	 in	 the
simplest	 possible	 context.	 In	 reality,	 prices	 can	 be	 any	 number	 of	 dollars	 and
cents,	 and	 for	 all	 intents	 and	 purposes	 it	 is	 as	 if	 they	 can	 be	 chosen	 over	 a
continuous	range	of	numbers.

Our	 theory	can	cope	with	 this	 further	extension	quite	easily,	using	nothing
more	 than	basic	high-school	algebra	and	geometry.	We	can	 show	 the	prices	of
the	 two	 firms	 in	 a	 two-dimensional	 graph,	 measuring	 RE’s	 price	 along	 the
horizontal	or	X	axis	and	BB’s	price	along	the	vertical	or	Y	axis.	We	can	show
the	best	responses	in	this	graph	instead	of	showing	bold	italic	profit	numbers	in	a
game	table	of	discrete	price	points.

	
We	do	this	for	the	original	example	where	the	cost	of	each	shirt	to	each	store

was	$20.	We	omit	the	details	of	the	mathematics	and	merely	tell	you	the	result.7
The	formula	for	BB’s	best	response	in	terms	of	RE’s	price	(or	BB’s	belief	about
the	price	RE	is	setting)	is

BB’s	best	response	price	=	24	+	0.4	×	RE’s	price	(or	BB’s	belief	about	it).
	



This	is	shown	as	the	flatter	of	the	two	lines	in	the	above	graph.	We	see	that	for
each	$1	cut	in	RE’s	price,	BB’s	best	response	should	be	to	cut	its	own	price	but
by	less,	namely	40	cents.	This	is	the	result	of	BB’s	calculation,	striking	the	best
balance	between	losing	customers	to	RE	and	accepting	a	lower	profit	margin.

The	steeper	of	the	two	curves	in	the	figure	is	RE’s	best	response	to	its	belief
about	BB’s	price.	Where	 the	 two	curves	 intersect,	 the	best	 response	of	each	 is
consistent	 with	 the	 other’s	 beliefs;	 we	 have	 a	 Nash	 equilibrium.	 The	 figure
shows	that	this	occurs	when	each	firm	charges	$40.	Moreover,	it	shows	that	this
particular	 game	has	 exactly	 one	Nash	 equilibrium.	Our	 finding	 a	 unique	Nash
equilibrium	 in	 the	 table	 where	 prices	 had	 to	 be	 multiples	 of	 $1	 was	 not	 an
artificial	consequence	of	that	restriction.

Such	 graphs	 or	 tables	 that	 allow	 much	 more	 detail	 than	 we	 could	 in	 the
simple	 examples	 are	 a	 standard	 method	 for	 computing	 Nash	 equilibria.	 The
calculation	 or	 graphing	 can	 quickly	 get	 too	 complicated	 for	 paper-and-pencil
methods,	and	too	boring	besides,	but	that’s	what	computers	are	for.	The	simple
examples	give	us	a	basic	understanding	of	 the	concept,	 and	we	should	 reserve
our	human	thinking	skills	for	the	higher-level	activity	of	assessing	its	usefulness.
Indeed,	that	is	our	very	next	topic.

A	BEAUTIFUL	EQUILIBRIUM?
	

John	Nash’s	equilibrium	has	a	lot	of	conceptual	claim	to	be	the	solution	of	a
game	 where	 each	 player	 has	 the	 freedom	 of	 choice.	 Perhaps	 the	 strongest
argument	in	its	favor	takes	the	form	of	a	counterargument	to	any	other	proposed
solution.	A	Nash	equilibrium	is	a	configuration	of	strategies	where	each	player’s
choice	 is	 his	 best	 response	 to	 the	 other	 player’s	 choice	 (or	 the	 other	 players’
choices	when	there	are	more	than	two	players	in	the	game).	If	some	outcome	is
not	a	Nash	equilibrium,	at	least	one	player	must	be	choosing	an	action	that	is	not
his	best	response.	Such	a	player	has	a	clear	incentive	to	deviate	from	that	action,
which	would	destroy	the	proposed	solution.

If	there	are	multiple	Nash	equilibria,	we	do	need	some	additional	method	for
figuring	out	which	one	will	emerge	as	the	outcome.	But	that	just	says	we	need
Nash	plus	something	else;	it	does	not	contradict	Nash.

So	we	have	 a	beautiful	 theory.	But	 does	 it	work	 in	practice?	One	 answers
this	question	by	 looking	for	 instances	where	such	games	are	played	 in	 the	real
world,	or	by	creating	them	in	a	laboratory	setting	and	then	comparing	the	actual
outcomes	 against	 the	predictions	of	 the	 theory.	 If	 the	 agreement	 is	 sufficiently
good,	 that	 supports	 the	 theory;	 if	 not,	 the	 theory	 should	 be	 rejected.	 Simple,



right?	In	fact	the	process	turns	complicated	very	quickly,	both	in	implementation
and	in	interpretation.	The	results	are	mixed,	with	some	reasons	for	optimism	for
the	theory	but	also	some	ways	in	which	the	theory	must	be	augmented	or	altered.

The	 two	methods—observation	and	experiment—have	different	merits	 and
flaws.	 Laboratory	 experiments	 allow	 proper	 scientific	 “control.”	 The
experimenters	 can	 specify	 the	 rules	 of	 the	 game	 and	 the	 objectives	 of	 the
participants	 quite	 precisely.	 For	 example,	 in	 pricing	 games	where	 the	 subjects
play	the	roles	of	the	managers	of	the	firms,	we	can	specify	the	costs	of	the	two
firms	and	the	equations	for	the	quantities	each	would	sell	in	relation	to	the	prices
both	charge,	and	give	the	players	the	appropriate	motivation	by	paying	them	in
proportion	 to	 the	profits	 they	achieve	for	 their	 firm	in	 the	game.	We	can	study
the	effects	of	a	particular	factor,	keeping	all	other	 things	constant.	By	contrast,
games	that	occur	in	real	life	have	too	many	other	things	going	on	that	we	cannot
control	and	too	many	things	about	the	players—their	true	motivations,	the	firms’
costs	 of	 production,	 and	 so	 on—that	 we	 do	 not	 know.	 That	 makes	 it	 hard	 to
make	 inferences	 about	 the	 underlying	 conditions	 and	 causes	 by	 observing	 the
outcomes.

On	the	other	hand,	real-world	observations	do	have	some	advantages.	They
lack	the	artificiality	of	laboratory	experiments,	in	which	the	subjects	are	usually
students,	who	have	no	previous	experience	in	business	or	the	similar	applications
that	motivate	the	games.	Many	are	novices	even	to	the	setting	of	the	laboratory
where	the	games	are	staged.	They	have	to	understand	the	rules	of	the	game	and
then	play	 it,	 all	 in	 a	matter	 of	 an	hour	 or	 two.	Think	how	 long	 it	 took	you	 to
figure	out	how	 to	play	even	simple	board	games	or	computer	games;	 that	will
tell	you	how	naïve	the	play	in	such	settings	can	be.	We	already	discussed	some
examples	 of	 this	 problem	 in	 chapter	 2.	 A	 second	 issue	 concerns	 incentives.
Although	 the	 experimenter	 can	 give	 the	 students	 the	 correct	 incentives	 by
designing	the	structure	of	their	monetary	payments	to	fit	their	performance	in	the
game,	the	sizes	of	the	payments	are	usually	small,	and	even	college	students	may
not	 take	 them	 sufficiently	 seriously.	 By	 contrast,	 business	 games	 and	 even
professional	sports	in	the	real	world	are	played	by	experienced	players	for	large
stakes.

For	these	reasons,	one	should	not	rely	solely	on	any	one	form	of	evidence,
whether	it	supports	or	rejects	a	theory,	but	should	use	both	kinds	and	learn	from
each.	With	 these	 cautions	 in	mind,	 let	 us	 see	 how	 the	 two	 types	 of	 empirical
approaches	do.

The	field	of	 industrial	organization	 in	economics	provides	 the	 largest	body
of	 empirical	 testing	of	 gametheoretic	 competition	 among	 firms.	 Industries	 like
auto	manufacturing	 have	 been	 studied	 in	 depth.	 These	 empirical	 investigators



start	with	 several	 handicaps.	 They	 do	 not	 know	 the	 firms’	 costs	 and	 demands
from	any	independent	source,	and	must	estimate	these	things	from	the	same	data
that	 they	 want	 to	 use	 for	 testing	 the	 pricing	 equilibrium.	 They	 do	 not	 know
precisely	how	the	quantities	sold	by	each	firm	depend	on	the	prices	charged	by
all.	In	the	examples	in	this	chapter,	we	simply	assumed	a	linear	relationship,	but
the	real-world	counterparts	(demand	functions,	in	the	jargon	of	economics)	can
be	 nonlinear	 in	 quite	 complicated	 ways.	 The	 investigator	 must	 assume	 some
specific	 form	of	 the	nonlinearity.	Real-life	competition	among	firms	 is	not	 just
about	 prices;	 it	 has	many	 other	 dimensions—advertising,	 investment,	 research
and	development.	Real-life	managers	may	not	have	the	pure	and	simple	aims	of
profit	 (or	 shareholder	 value)	 maximization	 that	 economic	 theory	 usually
assumes.	And	competition	among	firms	in	real	life	extends	over	several	years,	so
an	 appropriate	 combination	 of	 backward	 reasoning	 and	 Nash	 equilibrium
concepts	 must	 be	 specified.	 And	 many	 other	 conditions,	 such	 as	 income	 and
costs,	change	from	one	year	to	the	next,	and	firms	enter	or	exit	the	industry.	The
investigator	 must	 think	 about	 what	 all	 these	 other	 things	 might	 be	 and	 make
proper	allowance	for	(control	for,	in	statistical	jargon)	their	effects	on	quantities
and	prices.	Real-world	outcomes	are	also	affected	by	many	random	factors	and
so,	uncertainty	must	be	allowed	for.

A	 researcher	must	make	a	 choice	 in	 each	of	 these	matters	 and	 then	derive
equations	that	capture	and	quantify	all	the	relevant	effects.	These	equations	are
then	 fitted	 to	 the	data,	 and	 statistical	 tests	performed	 to	 see	how	well	 they	do.
Then	 comes	 an	 equally	 difficult	 problem:	 What	 does	 one	 conclude	 from	 the
findings?	 For	 example,	 suppose	 the	 data	 do	 not	 fit	 your	 equations	 very	 well.
Something	 in	 your	 specification	 that	 led	 to	 the	 equations	was	 not	 correct,	 but
what	was	it?	It	could	be	the	nonlinear	form	of	the	equations	you	chose;	it	could
be	 the	 exclusion	 of	 some	 relevant	 variable,	 like	 income,	 or	 of	 some	 relevant
dimension	 of	 competition,	 like	 advertising;	 or	 it	 could	 be	 that	 the	 Nash
equilibrium	 concept	 used	 in	 your	 derivations	 is	 invalid.	 Or,	 it	 could	 be	 a
combination	of	 all	 these	 things.	You	cannot	 conclude	 that	Nash	 equilibrium	 is
incorrect	when	something	else	might	be	wrong.	(But	you	would	be	right	to	raise
your	level	of	doubt	about	the	equilibrium	concept.)

Different	 researchers	 have	made	different	 choices	 in	 all	 these	matters	 and,
predictably,	 have	 found	 different	 results.	 After	 a	 thorough	 survey	 of	 this
research,	 Peter	 Reiss	 and	 Frank	 Wolak	 of	 Stanford	 University	 give	 a	 mixed
verdict:	“The	bad	news	is	that	the	underlying	economics	can	make	the	empirical
models	 extremely	 complex.	 The	 good	 news	 is	 that	 the	 attempts	 so	 far	 have
begun	 to	 define	 the	 issues	 that	 need	 to	 be	 addressed.”8	 In	 other	 words,	 more
research	is	needed.



Another	active	area	for	empirical	estimation	concerns	auctions	where	a	small
number	 of	 strategically	 aware	 firms	 interact	 in	 bidding	 for	 things	 like
bandwidths	 in	 the	 airwave	 spectrum.	 In	 these	 auctions,	 asymmetry	 of
information	is	a	key	issue	for	the	bidders	and	also	for	the	auctioneer.	Therefore
we	postpone	 the	discussion	of	 auctions	 to	 chapter	10,	 after	we	have	examined
the	general	issues	of	information	in	games	in	chapter	8.	Here	we	merely	mention
that	 empirical	 estimation	 of	 auction	 games	 is	 already	 having	 considerable
success.9

What	do	 laboratory	experiments	have	 to	say	about	 the	predictive	power	of
game	 theory?	 Here	 the	 record	 is	 also	 mixed.	 Among	 the	 earliest	 experiments
were	the	markets	set	up	by	Vernon	Smith.	He	found	surprisingly	good	results	for
game	theory	as	well	as	for	economic	theory:	small	numbers	of	traders,	each	with
no	 direct	 knowledge	 of	 the	 others’	 costs	 or	 values,	 could	 achieve	 equilibrium
exchanges	very	quickly.

Other	 experiments	 with	 different	 kinds	 of	 games	 yielded	 outcomes	 that
seemed	contradictory	 to	 theoretical	 predictions.	For	 example,	 in	 the	ultimatum
game,	where	one	player	makes	a	take-it-or-leave-it	offer	to	the	other	for	dividing
a	 given	 sum	 between	 the	 two,	 the	 offers	 were	 surprisingly	 generous.	 And	 in
prisoners’	 dilemmas,	 good	 behavior	 occurred	 far	 more	 frequently	 than	 theory
might	lead	people	to	believe.	We	discussed	some	of	these	findings	in	chapters	2
and	 3.	 Our	 general	 conclusion	 was	 that	 the	 participants	 in	 these	 games	 had
different	preferences	or	valuations	than	the	purely	selfish	ones	that	used	to	be	the
natural	assumption	in	economics.	This	is	an	interesting	and	important	finding	on
its	own;	however,	once	the	realistic	“social”	or	“other-regarding”	preferences	are
allowed	 for,	 the	 theoretical	 concepts	 of	 equilibrium—backward	 reasoning	 in
sequential-move	games	and	Nash	in	simultaneous-move	games—yield	generally
good	explanations	of	the	observed	outcomes.

When	a	game	does	not	have	a	unique	Nash	equilibrium,	the	players	have	the
additional	problem	of	 locating	a	 focal	point	or	some	other	method	of	selection
among	the	possible	equilibria.	How	well	they	succeed	depends	on	the	context,	in
just	 the	 way	 that	 theory	 suggests.	 If	 the	 players	 have	 sufficiently	 common
understanding	for	their	expectations	to	converge,	they	will	succeed	in	settling	on
a	good	outcome;	otherwise	disequilibrium	may	persist.

Most	experiments	work	with	subjects	who	have	no	prior	experience	playing
the	particular	game.	The	behavior	of	these	novices	does	not	initially	conform	to
equilibrium	theory,	but	it	often	converges	to	equilibrium	as	they	gain	experience.
But	 some	uncertainty	 about	what	 the	other	player	will	 do	persists,	 and	a	good
concept	of	 equilibrium	should	allow	players	 to	 recognize	 such	uncertainty	and
respond	to	it.	One	such	extension	of	 the	Nash	equilibrium	concept	has	become



increasingly	 popular;	 this	 is	 the	 quantal	 response	 equilibrium,	 developed	 by
professors	 Richard	 McKelvey	 and	 Thomas	 Palfrey	 of	 Caltech.	 This	 is	 too
technical	 for	 a	 book	 like	 ours,	 but	 some	 readers	may	 be	 inspired	 to	 read	 and
study	it.10

After	a	detailed	review	of	the	relevant	work,	two	of	the	top	researchers	in	the
field	of	experimental	economics,	Charles	Holt	of	the	University	of	Virginia	and
Alvin	Roth	 of	Harvard	University,	 offer	 a	 guardedly	 optimistic	 prognosis:	 “In
the	last	20	years,	the	notion	of	Nash	equilibrium	has	become	a	required	part	of
the	 tool	 kit	 for	 economists	 and	 other	 social	 and	 behavioral	 scientists….	There
have	 been	 modifications,	 generalizations,	 and	 refinements,	 but	 the	 basic
equilibrium	analysis	 is	 the	place	 to	 begin	 (and	 sometimes	 end)	 the	 analysis	 of
strategic	 interactions.”11	 We	 think	 that	 to	 be	 exactly	 the	 right	 attitude	 and
recommend	 this	 approach	 to	 our	 readers.	 When	 studying	 or	 playing	 a	 game,
begin	with	the	Nash	equilibrium,	and	then	think	of	reasons	why,	and	the	manner
in	which,	the	outcome	may	differ	from	the	Nash	predictions.	This	dual	approach
is	more	 likely	 to	give	you	a	good	understanding	or	success	 in	actual	play	 than
either	a	totally	nihilistic—anything	goes—attitude	or	a	slavishly	naïve	adherence
to	the	Nash	equilibrium	with	additional	assumptions,	such	as	selfishness.

CASE	STUDY:	HALF	WAY
	

A	Nash	equilibrium	is	a	combination	of	two	conditions:
	

i.	Each	player	is	choosing	a	best	response	to	what	he	believes	the	other
players	will	do	in	the	game.
ii.	Each	player’s	 beliefs	 are	 correct.	The	other	 players	 are	 doing	 just
what	everyone	else	thinks	they	are	doing.

	

It	is	easier	to	describe	this	outcome	in	a	two-player	game.	Our	two	players,
Abe	 and	Bea,	 each	 have	 beliefs	 about	what	 the	 other	will	 do.	Based	 on	 those
beliefs,	Abe	and	Bea	each	choose	to	take	an	action	that	maximizes	their	payoffs.
The	beliefs	prove	 right:	Abe’s	best	 response	 to	what	he	 thinks	Bea	 is	doing	 is
just	 what	 Bea	 thought	 Abe	 would	 do,	 and	 Bea’s	 best	 response	 to	 what	 she
thought	Abe	would	do	is	indeed	just	what	Abe	expected	her	to	do.



Let’s	 look	 at	 these	 two	 conditions	 separately.	 The	 first	 condition	 is	 quite
natural.	 If	 otherwise,	 then	 you’d	 have	 to	 argue	 that	 someone	 is	 not	 taking	 the
best	action	given	what	he	or	she	believes.	If	he	or	she	had	something	better,	why
not	do	it?

Mostly,	 the	rub	comes	in	the	second	condition—that	everyone	is	correct	 in
what	 they	believe.	For	Sherlock	Holmes	and	Professor	Moriarty	 this	was	not	a
problem:

“‘All	that	I	have	to	say	has	already	crossed	your	mind,’	said	he.
‘Then	possibly	my	answer	has	crossed	yours,’	I	replied.
‘You	stand	fast?’
‘Absolutely.’”

	

For	 the	 rest	 of	 us,	 correctly	 anticipating	what	 the	 other	 side	will	 do	 is	 often	 a
challenge.

The	 following	 simple	game	will	help	 illustrate	 the	 interplay	between	 these
two	conditions	and	why	you	might	or	might	not	want	to	accept	them.

Abe	and	Bea	are	playing	a	game	with	the	following	rules:	Each	player	is	to
pick	a	number	between	0	and	100,	inclusive.	There	is	a	$100	prize	to	the	player
whose	number	is	closest	to	half	the	other	person’s	number.

We’ll	be	Abe	and	you	can	play	Bea.	Any	questions?

What	if	there’s	a	tie?
	

Okay,	in	that	case	we	split	the	prize.	Any	other	questions?

No.
	

Great,	then	let’s	play.	We’ve	picked	our	number.	Time	for	you	to	pick	yours.
What	is	your	number?	To	help	keep	yourself	honest,	write	it	down.

Case	Discussion
	

We	picked	50.	No,	we	didn’t.	To	see	what	we	actually	picked,	you’ll	have	to



read	on.
Let’s	start	by	taking	a	step	back	and	use	the	two-step	approach	to	finding	a

Nash	equilibrium.	In	step	1,	we	believe	that	your	strategy	had	to	be	an	optimal
response	 to	 something	 we	 might	 have	 done.	 Since	 our	 number	 has	 to	 be
something	 between	 0	 and	 100,	 we	 figure	 that	 you	 couldn’t	 have	 picked	 any
number	bigger	than	50.	For	example,	the	number	60	is	only	an	optimal	response
if	you	thought	we	would	pick	120,	something	we	couldn’t	do	under	the	rules.

What	 that	 tells	 us	 is	 that	 if	 your	 choice	 was	 truly	 a	 best	 response	 to
something	we	might	have	done,	you	had	to	pick	a	number	between	0	and	50.	By
the	same	token,	if	we	picked	a	number	based	on	something	that	you	might	have
done,	we	would	have	picked	something	between	0	and	50.

Believe	 it	 or	 not,	 many	 folks	 stop	 right	 there.	When	 this	 game	 is	 played
among	 people	 who	 haven’t	 read	 this	 book,	 the	most	 common	 response	 is	 50.
Frankly,	we	think	that	is	a	pretty	lame	answer	(with	apologies	if	that’s	what	you
picked).	Remember	that	50	is	only	the	best	choice	if	you	think	that	the	other	side
was	going	to	pick	100.	But,	in	order	for	the	other	side	to	pick	100,	they	would
have	 to	have	misunderstood	the	game.	They	would	have	had	 to	pick	a	number
that	had	(almost)	no	chance	of	winning.	Any	number	less	than	100	will	beat	100.

We	 will	 assume	 that	 your	 strategy	 was	 a	 best	 response	 to	 something	 we
might	 have	 done	 and	 so	 it	 is	 between	 0	 and	 50.	 That	 means	 our	 best	 choice
should	be	something	between	0	and	25.

Note	 that	 at	 this	 juncture,	 we	 have	 taken	 a	 critical	 step.	 It	 may	 seem	 so
natural	 that	 you	 didn’t	 even	 notice.	 We	 are	 no	 longer	 relying	 on	 our	 first
condition	 that	our	strategy	 is	a	best	 response.	We	have	 taken	 the	next	step	and
proposed	that	our	strategy	should	be	a	best	response	to	something	that	is	a	best
response	from	you.

If	you	are	going	to	do	something	that	is	a	best	response,	we	should	be	doing
something	that	is	a	best	response	to	a	best	response.

At	 this	 point,	 we	 are	 beginning	 to	 form	 some	 beliefs	 about	 your	 actions.
Instead	of	imagining	that	you	can	do	anything	allowed	by	the	rules,	we	are	going
to	 assume	 that	 you	 will	 actually	 have	 picked	 a	 move	 that	 is	 a	 best	 response.
Given	 the	 quite	 sensible	 belief	 that	 you	 are	 not	 going	 to	 do	 something	 that
doesn’t	make	sense,	it	then	follows	that	we	should	only	pick	a	number	between	0
and	25.

Of	 course,	 by	 the	 same	 token,	 you	 should	 be	 realizing	 that	 we	 won’t	 be
picking	a	number	bigger	 than	50.	 If	you	 think	 that	way,	 then	you	won’t	pick	a
number	bigger	than	25.

As	you	might	have	guessed,	the	experimental	evidence	shows	that	after	50,
25	is	 the	most	common	guess	 in	 this	game.	Frankly,	25	is	a	much	better	guess



than	 50.	 At	 least	 it	 has	 a	 chance	 of	 winning	 if	 the	 other	 player	 was	 foolish
enough	to	pick	50.

If	we	take	the	view	that	you	are	only	going	to	pick	a	number	between	0	and
25,	then	our	best	response	is	now	limited	to	numbers	between	0	and	12.5.	In	fact,
12.5	is	our	guess.	We’ll	win	if	our	guess	is	closer	to	half	your	number	than	your
number	 is	 to	half	ours.	That	means	we	win	 if	you	picked	anything	higher	 than
12.5.

Did	we	win?
Why	did	we	pick	12.5?	We	thought	you	would	pick	a	number	between	0	and

25,	 and	 that’s	because	we	 thought	you’d	 think	we’d	pick	 a	number	between	0
and	50.	We	could	of	course	go	on	with	our	 reasoning	and	conclude	 that	you’d
figure	we’d	pick	a	number	between	0	and	25,	leading	you	to	choose	something
between	0	and	12.5.	If	you	had	thought	that,	then	you’d	be	one	step	ahead	of	us
and	would	have	won.	Our	experience	suggests	that	most	people	don’t	think	more
than	two	or	three	levels,	at	least	on	their	first	go-around.

Now	 that	 you’ve	 had	 some	 practice	 and	 better	 understand	 the	 game,	 you
might	 want	 a	 rematch.	 That’s	 fair.	 So	 write	 down	 your	 number	 again—we
promise	not	to	peek.

We	are	pretty	confident	that	you	expect	us	to	pick	something	less	than	12.5.
That	means	 you’ll	 pick	 something	 less	 than	 6.25.	And	 if	we	 think	 you’ll	 pick
something	less	than	6.25,	we	should	pick	a	number	less	than	3.125.

Now	 if	 this	 were	 the	 first	 go-around,	 we	 might	 stop	 there.	 But	 we	 just
explained	 that	most	 folks	 stop	 after	 two	 levels	 of	 reasoning,	 and	 this	 time	we
expect	that	you	are	determined	to	beat	us,	so	you’ll	engage	in	at	least	one	more
level	of	thinking	ahead.	If	you	expect	us	to	pick	3.125,	then	you’ll	pick	1.5625,
which	leads	us	to	think	of	0.78125.

At	this	point,	we	are	guessing	that	you	can	see	where	this	is	all	heading.	If
you	think	we	are	going	to	pick	a	number	between	0	and	X,	then	you	should	pick
something	between	0	and	X/2.	And	if	we	think	you	are	going	to	pick	something
between	0	and	X/2,	then	we	should	pick	something	between	0	and	X/4.

The	only	way	 that	we	 can	both	 be	 right	 is	 if	we	both	 pick	 0.	That’s	what
we’ve	done.	This	is	the	Nash	equilibrium.	If	you	pick	0,	we	want	to	pick	0;	if	we
pick	0,	you	want	 to	pick	0.	Thus	if	we	both	correctly	anticipate	what	 the	other
will	do,	we	both	do	best	picking	0,	just	what	we	expected	the	other	to	do.

We	should	have	picked	0	the	first	time	around	as	well.	If	you	pick	X	and	we
pick	0,	then	we	win.	That	is	because	0	is	closer	to	X/2	than	X	is	to	0/2	=	0.	We
knew	this	all	along	but	didn’t	want	to	give	it	away	the	first	time	we	played.

As	it	 turned	out,	we	didn’t	actually	need	to	know	anything	about	what	you
might	 be	 doing	 to	 pick	 0.	But	 that	 is	 a	 highly	 unusual	 case	 and	 an	 artifact	 of



having	only	two	players	in	the	game.
Let’s	modify	the	game	to	add	more	players.	Now	the	person	whose	number

is	closest	to	half	the	average	number	wins.	Under	these	rules,	it	is	no	longer	the
case	that	0	always	wins.*	But	it	is	still	the	case	that	the	best	responses	converge
to	zero.	In	the	first	round	of	reasoning,	all	players	will	pick	something	between	0
and	50.	(The	average	number	picked	can’t	be	above	100,	so	half	the	average	is
bounded	by	50.)	 In	 the	second	iteration	of	 logic,	 if	everyone	 thinks	others	will
play	a	best	response,	then	in	response	everyone	should	pick	something	between
0	and	25.	In	the	third	iteration	of	logic,	they’ll	all	pick	something	between	0	and
12.5.

How	far	people	are	able	to	go	in	this	reasoning	is	a	judgment	call.	Again,	our
experience	 suggests	 that	most	 people	 stop	 at	 two	 or	 three	 levels	 of	 reasoning.
The	case	of	a	Nash	equilibrium	requires	that	the	players	follow	the	logic	all	the
way.	Each	player	picks	a	best	response	to	what	he	or	she	believes	that	the	other
players	are	doing.	The	logic	of	Nash	equilibrium	leads	us	to	the	conclusion	that
all	players	will	pick	0.	Everyone	picking	0	is	the	only	strategy	where	each	of	the
players	is	choosing	a	best	response	to	what	they	believe	other	players	are	doing
and	each	is	right	about	what	they	believe	the	others	will	be	doing.

When	people	 play	 this	 game,	 they	 rarely	pick	 zero	on	 the	 first	 go-around.
This	 is	 convincing	evidence	 against	 the	predictive	power	of	Nash	equilibrium.
On	the	other	hand,	when	they	play	 the	game	even	 two	or	 three	 times,	 they	get
very	close	to	the	Nash	result.	That	is	convincing	evidence	in	favor	of	Nash.

Our	view	is	that	both	perspectives	are	correct.	To	get	to	a	Nash	equilibrium,
all	 players	have	 to	 choose	best	 responses—which	 is	 relatively	 straightforward.
They	also	all	have	 to	have	correct	beliefs	about	what	 the	other	players	will	be
doing	in	the	game.	This	is	much	harder.	It	is	theoretically	possible	to	develop	a
set	of	internally	consistent	beliefs	without	playing	the	game,	but	it	is	often	easier
to	play	the	game.	To	the	extent	that	players	learn	that	their	beliefs	were	wrong	by
playing	 the	game	and	 then	 learn	how	 to	do	a	better	 job	predicting	what	others
will	do,	they	will	converge	to	a	Nash	equilibrium.

While	 experience	 is	 helpful,	 it	 is	 no	 guarantee	 of	 success.	 One	 problem
arises	when	there	are	multiple	Nash	equilibria.	Consider	 the	annoying	problem
of	what	to	do	when	a	mobile	phone	call	gets	dropped.	Should	you	wait	for	the
other	person	 to	call	you,	or	 should	you	call?	Waiting	 is	 a	best	 response	 if	you
think	 the	other	person	will	 call,	 and	calling	 is	 a	best	 response	 if	you	 think	 the
other	person	will	wait.	The	problem	here	is	that	there	are	two	equally	attractive
Nash	equilibria:	You	call	and	the	other	person	waits;	or	you	wait	and	the	other
person	calls.

Experience	 doesn’t	 always	 help	 get	 you	 there.	 If	 you	 both	wait,	 then	 you



might	decide	to	call,	but	if	you	both	happen	to	call	at	the	same	time,	then	you	get
busy	signals	(or	at	least	you	did	in	the	days	before	call	waiting).	To	resolve	this
dilemma,	we	 often	 turn	 to	 social	 conventions,	 such	 as	 having	 the	 person	who
first	made	the	call	do	the	callback.	At	least	that	way	you	know	the	person	has	the
number.



	

	

EPILOGUE	TO	PART	I
	

In	the	previous	four	chapters,	we	introduced	several	concepts	and	methods,
using	 examples	 from	business,	 sports,	 politics,	 and	 so	 forth	 as	vehicles.	 In	 the
chapters	 to	 follow,	 we	 will	 put	 the	 ideas	 and	 techniques	 to	 work.	 Here	 we
recapitulate	and	summarize	them	for	ready	reference.

A	 game	 is	 a	 situation	 of	 strategic	 interdependence:	 the	 outcome	 of	 your
choices	 (strategies)	 depends	 upon	 the	 choices	 of	 one	 or	 more	 other	 persons
acting	purposely.	The	decision	makers	involved	in	a	game	are	called	players,	and
their	choices	are	called	moves.	The	interests	of	the	players	in	a	game	may	be	in
strict	conflict;	one	person’s	gain	is	always	another’s	loss.	Such	games	are	called
zero-sum.	More	typically,	there	are	zones	of	commonality	of	interests	as	well	as
of	 conflict	 and	 so,	 there	 can	 be	 combinations	 of	mutually	 gainful	 or	mutually
harmful	strategies.	Nevertheless,	we	usually	refer	to	the	other	players	in	a	game
as	one’s	rivals.

The	 moves	 in	 a	 game	 may	 be	 sequential	 or	 simultaneous.	 In	 a	 game	 of
sequential	moves,	there	is	a	linear	chain	of	thinking:	If	I	do	this,	my	rival	can	do
that,	and	in	turn	I	can	respond	in	the	following	way.	Such	a	game	is	studied	by
drawing	a	game	tree.	The	best	choices	of	moves	can	be	found	by	applying	Rule
1:	Look	forward	and	reason	backward.

In	a	game	with	simultaneous	moves,	there	is	a	logical	circle	of	reasoning:	I
think	that	he	thinks	that	I	think	that…and	so	on.	This	circle	must	be	squared;	one
must	see	through	the	rival’s	action	even	though	one	cannot	see	it	when	making
one’s	 own	 move.	 To	 tackle	 such	 a	 game,	 construct	 a	 table	 that	 shows	 the
outcomes	 corresponding	 to	 all	 conceivable	 combinations	 of	 choices.	 Then
proceed	in	the	following	steps.

Begin	by	seeing	if	either	side	has	a	dominant	strategy—one	that	outperforms
all	of	that	side’s	other	strategies,	irrespective	of	the	rival’s	choice.	This	leads	to
Rule	 2:	 If	 you	have	a	 dominant	 strategy,	 use	 it.	 If	 you	 don’t	 have	 a	 dominant
strategy,	 but	 your	 rival	 does,	 then	 count	 on	 his	 using	 it,	 and	 choose	 your	 best
response	accordingly.

Next,	 if	neither	side	has	a	dominant	strategy,	see	 if	either	has	a	dominated
strategy—one	that	is	uniformly	worse	for	the	side	playing	it	than	all	the	rest	of
its	 strategies.	 If	 so,	 apply	 Rule	 3:	 Eliminate	 dominated	 strategies	 from



consideration.	Go	on	doing	so	successively.	If	during	the	process	any	dominant
strategies	emerge	in	the	smaller	games,	they	should	be	chosen.	If	this	procedure
ends	 in	 a	 unique	 solution,	 you	 have	 found	 the	 prescriptions	 of	 action	 for	 the
players	and	the	outcome	of	 the	game.	Even	if	 the	procedure	does	not	 lead	to	a
unique	outcome,	it	can	reduce	the	size	of	the	game	to	a	more	manageable	level.
Finally,	if	there	are	neither	dominant	nor	dominated	strategies,	or	after	the	game
has	been	simplified	as	far	as	possible	using	the	second	step,	apply	Rule	4:	Look
for	an	equilibrium,	a	pair	of	strategies	in	which	each	player’s	action	is	the	best
response	 to	 the	other’s.	 If	 there	 is	 a	 unique	 equilibrium	of	 this	 kind,	 there	 are
good	 arguments	 why	 all	 players	 should	 choose	 it.	 If	 there	 are	 many	 such
equilibria,	 one	 needs	 a	 commonly	 understood	 rule	 or	 convention	 for	 choosing
one	over	the	others.	If	there	is	no	such	equilibrium,	that	usually	means	that	any
systematic	behavior	can	be	exploited	by	one’s	 rivals,	which	 indicates	 the	need
for	mixing	one’s	plays,	the	subject	of	the	next	chapter.

In	practice,	games	can	have	some	sequential	moves	and	some	simultaneous
moves;	in	that	case	a	combination	of	these	techniques	must	be	employed	to	think
about	and	determine	one’s	best	choice	of	actions.


