বিস্তার পরিমাপ

১. নিচের তথ্যরাশির পরিসর নির্ণয় করো।

季) 14, 3, 19, 17, 4, 9, 16, 19, 22, 15, 18, 17, 12, 8, 16, 11, 3, 11, 0, 15

সমাধানঃ তথ্যরাশির সর্বোচ্চ মান = 22 এবং সর্বনিম্ন মান = 0

$$= (22-0)$$

= 22

খ) 48, 70, 58, 40, 43, 55, 63, 46, 56, 44

সমাধানঃ তথ্যরাশির সর্বোচ্চ মান = 70 এবং সর্বনিম্ন মান = 40

$$= (70-40)$$

গ)

উচ্চতা (সেমি)	গণসংখ্যা
95-105	8
105-115	12
115-125	28
125-135	30
135-145	15
145-155	7

সমাধানঃ এখানে, সর্বশেষ শ্রেণির উচ্চসীমা = 155

এবং প্রথম শ্রেণির নিম্নসীমা = 95

২। নিচের তথ্যরাশির গাণিতিক গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

季) 8, 15, 53, 49, 19, 62, 7, 15, 95, 77

সমাধানঃ

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়:

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির	X (গাণিতিক গড়)	$ x_i - X $
মান)		
8	$= \sum^{\infty} i / n$	32
15	$={}^{400}/_{10}$	25

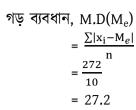
53	= 40	13
49	এখানে,	9
19	n = তথ্যরাশির	21
62	মানের সংখ্যা	22
7	$\sum_{\mathbf{X}_{\mathbf{i}}}$ = তথ্যরাশির	33
15	মানগুলোর যোগফল	25
95		55
77		37
n=10; $\sum x_i = 400$		$\sum x_i - \bar{X} =$
		272

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে.

গড় ব্যবধান, M.D(X)

$$=\frac{\sum |x_i - \bar{x}|}{n}$$

$$=\frac{272}{}$$


মধ্যক থেকে গড় ব্যবধান নির্ণয়:

প্রদত্ত তথ্যরাশিকে মানের উর্ধ্বক্রমে সাজিয়ে পাই, 7, 8, 15, 15, 19, 49, 53, 62, 77, 95 মধ্যক M_e = (19+49) ÷ 2 = 34

মধ্যক থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	M _e (মধ্যক)	x _i - M _e
8	34	26
15		19
53		19
49		15
19		15
62		28
7		27
15		19
95		61
77		43
n=10		$\sum \mathbf{x}_{i} - \mathbf{M}_{e} = 272$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে.

খ) 10, 15, 54, 59, 19, 62, 98, 8, 25, 95, 77, 46, 36

সমাধানঃ

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়:

গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির	X (গাণিতিক	$ \mathbf{x}_{i}$ - \mathbf{X}
মান)	গড়)	
10	$= \sum_{i=1}^{\infty} i / n$	36.46
15	$=\frac{604}{13}$	31.46
54	= 46.46	7 . 54
59	(প্রায়)	12.54
19	এখানে,	27.46
62	n =	15.54
98	তথ্যরাশির	51.54
8	মানের সংখ্যা	38.46
25	∑x _i = তথ্যরাশির	21.46
95	তথ্যরামনর মানগুলোর	48.54
77	মাণ্ডলোর যোগফল	30.54
46	6717177	0.46
36		10.46
n=13; $\sum x_i = 604$		$\sum \mathbf{x}_{i^{-}} \mathbf{X} = 332.46$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান,
$$M.D(\bar{X})$$

$$= \frac{\sum |x_i - \bar{x}|}{n}$$

$$= \frac{332.46}{n}$$

= 25.57 (প্রায়)

মধ্যক থেকে গড় ব্যবধান নির্ণয়:

প্রদত্ত তথ্যরাশিকে মানের উর্ধ্বক্রমে সাজিয়ে পাই,

8, 10, 15, 19, 25, 36, 46, 54, 59, 62, 77, 95, 98

∵ মধ্যক M_e= 46

মধ্যক থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i (তথ্যরাশির মান)	M _e (মধ্যক)	x _i - M _e	
10	46	36	
15		31	
54		8	
59		13	
19		27	
62		16	
98		52	
8		38	
25		21	
95		49	
77		31	
46		0	
36		10	
n=13		$\sum \mathbf{x}_{i} - \mathbf{M}_{e} = 332$	

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, M.D(M_e)

$$= \frac{\sum |\mathbf{x}_i - \mathbf{M}_e|}{n}$$

13 = 25.5384615

৩। প্রদত্ত উপাত্তের গাণিতিক গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

Х	f
60	2
61	0
62	15
63	30
64	25
65	12
66	11
67	5

সমাধানঃ গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করি।

ভিশনএ্যাপ১০ – গনিত সমাধান, আমাদের খুঁজুন Google Playstore (VisionApps10)

X	f	fx	x-X	f x-X
60	2	120	3.81	7.62
61	0	0	2.81	0
62	15	930	1.81	27.15
63	30	1890	0.81	24.3
64	25	1600	0.19	4.75
65	12	780	1.19	14.28
66	11	726	2.19	24.09
67	5	335	3.19	15.95
	n=100	$\sum fx = 6381;$		$\sum f x-X $
		$\overline{X} = \sum_{n} fx / n$		= 118.14
		$=\frac{6381}{100}$		
		= 63.81		

$$\because$$
 গড় ব্যবধান, $M.D(\overline{X})$

$$= \frac{\sum f|x_i - \overline{x}|}{n}$$

$$= \frac{118.14}{100}$$

= 1.1814

আবার,

মধ্যক থেকে গড ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করি।

X	f	f এর ক্রমযোজিত	x-M _e	f x- M _e
		মান		
60	2	2	4	8
61	0	2	3	0
62	15	17	2	30
63	30	47	1	30
64	25	72	0	0
65	12	84	1	12
66	11	95	2	22
67	5	100	3	15
	n=100;	∵ 48 -72		$\sum f x-$
	$^{n}/_{2} = 50;$	তম পদ 64;		M_e
	$^{n}/_{2} + 1 =$: 50 ও 52		= 117
	51	তম পদ 64;		
		$: M_e = (64)$		

+ 64) ÷ 2 =	
64	

∵ গড় ব্যবধান, M.D(Me) 117 n = 1.17

৪। প্রতিদিন রিক্সায় স্কুলে আসা যাওয়া বাবদ সবুজ ও মৌলির যথাক্রমে 50 ও 80 টাকা খরচ হয়।

ক) সবুজ ও মৌলির খরচের পরিমিত ব্যবধান নির্ণয় করো।

সমাধানঃ

সবুজ ও মৌলির খরচ যথাকরমে 50 ও 80 টাকা। এই তথ্য থেকে নিচের সারণিটি তৈরি করিঃ

X	x^2
50	2500
80	6400
$\sum x = 130$	$\sum x^2 = 8900$

এখন,

ভেদান্ধ, σ²

$$= \left(\frac{\sum x^2}{n}\right) - \left(\frac{\sum x}{n}\right)^2$$
$$= \left(\frac{8900}{2}\right) - \left(\frac{130}{2}\right)^2$$

$$= \left(\frac{8900}{2}\right) - \left(\frac{130}{2}\right)^2$$

= 225

 \cdot পরিমিত ব্যবধান, $\sigma = \sqrt{(\sigma^2)} = \sqrt{225} = 15$

খ) দেখাও যে, উপাত্ত দুটির গড় ব্যবধান পরিসরের অর্ধেক।

সমাধানঃ গাণিতিক গড় থেকে গড় ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

X _i	Χ¯	$ x_i - X $
50	$= \sum^{x} i/n$	15
80	$=\frac{130}{2}$	15
	= 65	
$n=2; \sum x_i = 130$		$\sum \mathbf{x}_{i} - \mathbf{X} = 30$

এখন, অবিন্যস্ত উপাত্তের ক্ষেত্রে,

গড় ব্যবধান, M.D(X)

$$= \frac{\sum f|x_i - \bar{x}|}{n}$$

$$= \frac{30}{2}$$

এবং.

পরিসর = 80 - 50 = 30

উপাত্ত দৃটির গড ব্যবধান পরিসরের অর্ধেক [দেখানো হলো]

৫। থানা স্বাস্থ্য কেন্দ্রের বহির্বিভাগ চিকিৎসাসেবা নিতে আসা কোনো এক দিনের রোগীর সংখ্যার তথ্য নিম্নরূপ:

বয়স	রোগীর সংখ্যা
0-15	15
15-30	4
30-45	5
45-60	9
60-75	7
75-90	10

ক) ভেদাঙ্কের মান কখন সর্বনিম্ন হয়? ব্যাখ্যা করো।

সমাধানঃ

 $_{
m X_i}$ এর মানগুলো যখন তাদের গাণিতিক গড় $_{
m X}^-$ এর অধিক নিকটবর্তী হয় তখন ভেদাঙ্কের মান সর্বনিম্ন হয়।

ব্যখ্যাঃ

ভেদাঙ্ক নির্ণয়ে $\sum (x_i - X)^2$ কে আমরা তুলনা করে উপরোক্ত তথ্যের সত্যতা ব্যাখ্যা করতে পারি। কারণ এখানে x_i ও \overline{X} এর মান যত কাছাকাছি হবে x_i - \overline{X} বা $\sum (x_i - \overline{X})^2$ এর মানও ততো ছোট হবে।

খ) উপাত্তের গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় করে তুলনা করো।

সমাধানঃ

গড ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

শ্রেণি	f	শ্রেণি	fx	x-	f x- X
		মধ্যমান		X	
		X			
0-15	15	7 . 5	112.5	35.7	535.5
15-30	4	22.5	90	20.7	82.8
30-45	5	37 . 5	187.5	5 . 7	28.5
45-60	9	52.5	472.5	9.3	83.7
60-75	7	67 . 5	472.5	24.3	170.1
75-90	10	82.5	825	39.3	393

r	1 =	$\sum fx =$	$\sum_{X} f x - X =$
5	50	2160	X =
		∵ X ¯	1293.6
		=	
		2160/50	
		= 43.2	

$$= \frac{\sum f|x_i - \bar{x}|}{n}$$

$$= \frac{1293.6}{50}$$

$$= 25.872$$

পরিমিত ব্যবধান নির্ণয়ের জন্য সারণি তৈরি করিঃ

শ্রেণি	f	শ্রেণি মধ্যমান	d = (x-a)
		X	
0-15	15	7 . 5	-2
15-30	4	22.5	-1
30-45	5	37.5 = a	0
45-60	9	52.5	1
60-75	7	67.5	2
75-90	10	82.5	3
	n = 50		

∴ ভেদাঙ্ক, σ²

$$\begin{split} &= \left\{ \left(\frac{\sum f d^2}{n}\right) - \left(\frac{\sum f dx}{n}\right)^2 \right\} \times h^2 \\ &= \left\{ \left(\frac{176}{50}\right) - \left(\frac{19}{50}\right)^2 \right\} \times 15^2 \end{split}$$

$$=\left\{\left(\frac{176}{50}\right)-\left(\frac{19}{50}\right)^2\right\}\times 15^2$$

$$= (3.52 - 0.1444) \times 15^{2}$$

= 759.51

 \cdot পরিমিত ব্যবধান, $\sigma = \sqrt{(\sigma^2)} = \sqrt{759.51} = 27.559$ (প্রায়)

৬। নিচের গণসংখ্যা নিবেশন সারণির গাণিতিক গড় 33,2 । গাণিতিক গড় নির্ণয় করে p এর মান নির্ণয় করো।

শ্রেণি ব্যাপ্তি	গণসংখ্যা
0-10	8
10-20	12
20-30	P
30-40	30
40-50	15
50-60	10
60-70	5

সমাধানঃ

গাণিতিক গড় নির্ণয়ের জন্য সারণি তৈরি করিঃ

শ্রেণি	শ্রেণির	f_i	U _i =	$f_i u_i$
ব্যাপ্তি	মধ্যবিন্দু		(x _i -	
	X_{i}		a)/h	
0-10	5	8	-2	-16
10-20	15	12	-1	-12
20-30	25 = a	P	0	0
30-40	35	30	1	30
40-50	45	15	2	30
50-60	55	10	3	30
60-70	65	5	4	20
h = 10		n =		$\sum f_i u_i =$
		p+80		82

∵ গাণিতিক গড়, X

$$= a + \left(\frac{\sum f_{i}u_{i}}{n}\right) \times h$$

$$= 25 + \left(\frac{82}{P + 80}\right) \times 1$$

$$= 25 + \frac{820}{P + 80}$$

$$= \frac{25P + 2000 + 820}{P + 80}$$

$$= \frac{25P + 2820}{P + 80}$$

শৰ্তমতে.

$$\bar{X} = 33.2$$

$$\overline{4}, \frac{25P + 2820}{P + 80} = 33.2$$

$$\therefore$$
 p = 20

বিদ্রঃ পাঠ্যবইয়ে এই প্রশ্নে গাণিতিক গড় ব্যবধান 33.2 বলা হয়েছে, কিন্তু পাঠ্যবইয়ের আলোচনার ক্ষেত্রে গড় ব্যবধানকে কখনো গাণিতিক গড় ব্যবধান বলা হয় নাই, আর এই ক্ষেত্রে আমাদের কাছে এই প্রশ্নটাকে কমপ্লিকেটেড মনে হয়েছে, তাই আমরা গাণিতিক গড় ধরে আমাদের মত করে সমাধান করেছি, তোমাদের মতামত জানিও-আমরা আরও যাচাই করব ভবিষ্যতে।

৭। নিপার একটি ফুলের বাগান আছে। বাগানটিতে 60টি বিভিন্ন জাতের ফুল গাছ আছে। গাছগুলোর উচ্চতার (সেন্টিমিটারে) মধ্যক 28.5 ।

উচ্চতা (সেমি)	গাছের সংখ্যা
0-10	5
10-20	X
20-30	20
30-40	15
40-50	у
50-60	5

ক) x ও y এর মান নির্ণয় করে সারণিটি পূরণ করো।

সমাধানঃ

এখানে, n = গাছের সংখ্যার সমষ্টি = 5+y+15+20+x+5 = x+y+45

আবার, দেওয়া আছে n = 60.

$$x+y+45 = 60$$

বা,
$$x+y = 60-45$$

আবার, দেওয়া আছে,

মধ্যক M_e = 28.5 যা নির্দেশ করে এই মান উচ্চতা শ্রেণি 20-30 এ বয়েছে।

তাহলে, এখানে,

20-30 শ্রেণির নিন্মসীমা, L = 20;

$$\frac{n}{2}$$
 = 30;

20-30 এর পূর্বের শ্রেণির ক্রমজোজিত গাছের সংখ্যা, $F_c = 5+x$;

শ্রেণি ব্যবধান, h = 10;

20-30 শ্রেণিতে গাছের সংখ্যা, $f_{\rm m}$ = 20

$$\therefore M_e = L + \left(\frac{n}{2} - F_e\right) \times \frac{h}{fm}$$

$$\overline{4}$$
, 28.5 = 20 + (30-5-x) $\times \frac{10}{20}$

বা,
$$(25-x) \times \frac{1}{2} = 28.5-20$$

$$\overline{4}$$
, $(25-x) \times \frac{1}{2} = 8.5$

এখন, x=8, (i) নং এ বসিয়ে পাই,

$$8+y = 15$$

У х ও у এর মান নির্ণয় পূর্বক সারণিটি নিমারুপঃ

উচ্চতা (সেমি)	গাছের সংখ্যা
0-10	5
10-20	8
20-30	20
30-40	15
40-50	7
50-60	5

খ) সংক্ষিপ্ত পদ্ধতিতে গাছগুলোর উচ্চতার গড় নির্ণয় করো।

সমাধানঃ

সংক্ষিপ্ত পদ্ধতিতে গড় নির্ণয়ের জন্য নিচের সারণিটি প্রস্তুত করিঃ

উচ্চতা (সেমি)	Xi	f_i
0-10	5	5
10-20	15	8
20-30	25	20
30-40	35 = a	15
40-50	45	7
50-60	55	5
h=10		n=60

😯 সংক্ষিপ্ত পদ্ধতিতে গাছগুলোর উচ্চতার গড়

$$= a + \left(\frac{\sum f_i u_i}{n}\right) \times h$$
$$= 35 + \left(\frac{-34}{60}\right) \times 10$$

= 35 - 5.67

= 29.33 (প্রায়)

গ) গাছগুলোর উচ্চতার মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

সমাধানঃ

দেওয়া আছে, গাছগুলোর উচ্চতার মধ্যক, M_e = 28.5 মধ্যক থেকে গড় ব্যাবধান নির্ণয়ের জন্য নিচের সারণিটি তৈরি করিঃ

Ì	উচ্চতা	Xi	f_i	x _i - M _e	$f_i x_i - M_e $
	(সেমি)	71 ₁	-1	[21] 141e]	11121 17161

0-10	5	5	23.5	117.5
10-20	15	8	13.5	108
20-30	25	20	3.5	70
30-40	35	15	6.5	97.5
40-50	45	7	16.5	115.5
50-60	55	5	26.5	132.5
h=10		n=60		$\sum f_i x_i - M_e = 641$

 \because মধ্যক হতে নিৰ্ণিত গড় ব্যবধান $= \frac{\sum f_i |x_i - M_e|}{n}$ $= \frac{641}{60}$ = 10.68 প্রায়)

ঘ) গাছগুলোর উচ্চতার গড় থেকে পরিমিত ব্যবধান নির্ণয় করো।

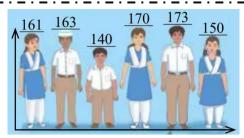
সমাধানঃ

খ থেকে পাই, গাছগুলোর উচ্চতার গড়, \overline{X} = 29.33

উচ্চতার গড় থেকে পরিমিত ব্যবধান নির্ণয়ের জন্য নিচের সারণি তৈরি করিঃ

শারাণ ভোর কারঃ						
উচ্চ	ত	Xi	f_i	$(x_i - \overline{X})^2$	$f_i(x_i - X\overline{)}^2$	
(C>	ামি)					
0-1	10	5	5	591.9489	2959.745	
10-	-20	15	8	205.3489	1642.791	
20-	-30	25	20	18.7489	374.978	
30-	-40	35	15	32.1489	482.2335	
40-	-50	45	7	245.5489	1718.842	
50-	-60	55	5	658.9489	3294.745	
h=	10		n=60		$\sum f_i(x_i$	
					$(\overline{X})^2 =$	
					10473.33	
		2				

∴ ভেদাঙ্গ, σ²


 $= \frac{\sum (x_i - \bar{x})^2}{}$

 $= \frac{10473.33}{60}$

= 174.5555

 \therefore পরিমিত ব্যবধান, $\sigma = \sqrt{\sigma^2} = \sqrt{174.5555} = 13.2119$ (প্রায়)

৮. পাশের ছবিটি লক্ষ করো। ছবিতে ছয় জন শিক্ষার্থীর উচ্চতা সেন্টিমিটারে দেওয়া আছে।

শিক্ষার্থীদের উচ্চতার –

ক) গড় ও মধ্যক নির্ণয় করো।

সমাধানঃ

ছবি হতে প্রাপ্ত ছয় জন শিক্ষার্থীর উচ্চতা যথাক্রমেঃ 161, 163, 140, 170, 173, 150

∴ উচ্চতার গড

শিক্ষার্থীর সংখ্যা

$$=\frac{957}{6}$$

= 159.5 সেমি

আবার,

উচ্চতাগুলোকে মানের উর্ধ্বক্রমে সাজিয়ে পাই.

140, 150, 161, 163,170, 173

∴ উচ্চতার মধ্যক

$$=\frac{161+163}{2}$$

= 162

খ) গড় ও মধ্যক থেকে গড় ব্যবধান নির্ণয় করো।

সমাধানঃ

ক হতে পাই, গড়, X = 159.5

গড় থেকে গড় ব্যবধান নির্ণয়ের সারণি তৈরি করিঃ

Xi	$ x_i - X $	
161	1.5	
163	3.5	
140	19.5	
170	10.5	
173	13.5	
150	9.5	
n=6	$\sum \mathbf{x}_{i} - \mathbf{X} = 58$	

∴ গড় ব্যবধান, MD(X̄)

$$=\frac{\sum(x_i-\bar{x})}{}$$

= 9.667 (প্রায়)

আবার,

ক হতে পাই, মধ্যক, M_e = 162

মধ্যক থেকে গড ব্যবধান নির্ণয়ের সারণি তৈরি করিঃ

<u> </u>	
X _i	$ x_i - M_e $
161	1
163	1
140	22
170	8
173	11
150	12
n=6	$\sum x_i - M_e = 55$

∴ গড় ব্যবধান, MD(Ma)

$$= \frac{\sum |\mathbf{x}_i - \mathbf{M}_e|}{}$$

$$=\frac{33}{6}$$

= 9.167 (প্রায়)

গ) গড় ও মধ্যক থেকে পরিমিত ব্যবধান নির্ণয় করো।

সমাধানঃ

ক হতে পাই, গড়, X = 159.5

গড হতে পরিমিত ব্যবধান নির্ণয়ে সারণি তৈরি করিঃ

19 (40 1111 10 1) 111 1 1 1 1 1 1 1 1 1 1 1 1				
Xi	x _i - X	$(x_i - X\overline{)}^2$		
161	1.5	2.25		
163	3.5	12.25		
140	-19.5	380.25		
170	10.5	110.25		
173	13.5	182.25		
150	-9.5	90.25		
n=6		$\sum (x_i - \bar{X})^2 = 777.5$		

 \therefore ভেদাঙ্গ, σ^2

$$=\frac{\sum (x_i-\bar{x})^2}{}$$

$$=\frac{777.5}{6}$$

= 129.583333

 \therefore পরিমিত ব্যবধান, $\sigma = \sqrt{\sigma^2} = \sqrt{129.583333} = 11.3834$

(প্রায়)

আবার,

ক হতে পাই, মধ্যক, M_e = 162

	~ ~		^ /	_		_
মধ্যক হতে	পরিমিত	ব্যবধান	নিৰ্ণযো	সার্বাণ	তৈরি	ক্রবিঃ

X _i	x _i - M _e	$(x_i - M_e)^2$
161	-1	1
163	1	1
140	-22	484
170	8	64
173	11	121
150	-12	144
n=6		$\sum (x_i - M_e)^2 = 815$

- \therefore ভেদাঙ্ক, σ^2
- $= \frac{\sum (x_i M_e)^2}{}$
- = 815
- = 135.833333
- \therefore পরিমিত ব্যবধান, $\sigma = \sqrt{\sigma^2} = \sqrt{135.833333} = 11.6547$ (প্রায়)
- ৯। দশ সদস্যের একটি নমুনার গাণিতিক গড় ও পরিমিত ব্যবধান যথাক্রমে 9.5 এবং 2.5। পরে 15 মানের আরও একটি সদস্য নমুনায় অন্তর্ভুক্ত করা হলো। তাহলে, এগারো সদস্যবিশিষ্ট নমুনার গাণিতিক গড় ও পরিমিত ব্যবধান নির্ণয় করো।

সমাধানঃ

এগারো সদস্যবিশিষ্ট নমুনার গাণিতিক গড় নির্ণয়ঃ

দেওয়া আছে.

- 10 সদস্যের নমুনার গাণিতিক গড় = 9.5
- ∴ 10 সদস্যের নমুনার মানের সমষ্টি = 9.5×10 = 95
- এখন, 15 মানের আরও এক সদস্যের নমুনা যোগ করলে, নমুনার মানের সমষ্টি হয় = 95+15 = 110
- \therefore 11 সদস্যের ক্ষেত্রে গাণতিক গড় = $^{110}/_{11}$ = 10

এগারো সদস্যবিশিষ্ট নমুনার পরিমিত ব্যবধান নির্ণয়ঃ

দেওয়া আছে.

$$\sigma = 2.5$$

বা,
$$\sigma^2 = 6.25$$

বা,
$$\frac{1}{10}(x_1^2 + x_2^2 + \dots + x_{10}^2) - (95/10)^2 = 6.25$$
 [: 10 সদস্যের ন্মুনার মানের সমষ্টি = 9.5×10 = 95]

$$\sqrt{1}$$
, $\frac{1}{10}$ ($x_1^2 + x_2^2 + \dots + x_{10}^2$) - 90.25 = 6.25

বা,
$$\frac{1}{10}(x_1^2 + x_2^2 + \dots + x_{10}^2) = 96.5$$

$$\overline{4}$$
, $(x_1^2 + x_2^2 + \dots + x_{10}^2) = 965$

বা,
$$x_1^2 + x_2^2 + \dots + x_{10}^2 + 15^2 = 965 + 15^2$$
 [উভয়পক্ষে 15^2 যোগ করে]

বা,
$$x_1^2 + x_2^2 + \dots + x_{10}^2 + 15^2 = 1190$$

আবার, 11টি নমুনার সমষ্টি = 95+15 = 110 [প্রথম অংশে দ্রুষ্টব্য]

অর্থাৎ, x₁+x₂+....+x₁₁ = 110

∴ এগারো সদস্যবিশিষ্ট নমুনার ভেদাংক

$$= {1 \choose 1} \sum_{i=1}^{11} x_i^2 - (\sum_{i=1}^{11} x_i/n)^2$$

$$= (1 / n \sum_{i=1}^{11} x_i^2) - (\sum_{i=1}^{11} x_i/n)^2$$

$$=\frac{1190}{11}-(\frac{110}{11})^2$$

- = 108.1818 100
- = 8.1818 (প্রায়)
- ∴ এগারো সদস্যবিশিষ্ট নমুনার পরিমিত ব্যবধান
- = $\sqrt{8.1818}$ = 2.86 (প্রায়)

১০। 100 টি কোম্পানির বার্ষিক মুনাফার (কোটি টাকায়) তথ্য নিচে দেওয়া হলো:

মুনাফা (কোটি টাকায়)	কোম্পানির সংখ্যা
0-10	7
10-20	12
20-30	22
30-40	30
40-50	20
50-60	9

উপাত্তের গাণিতিক গড় হতে গড় ব্যবধান ও পরিমিত ব্যবধান নির্ণয় করো।

সমাধানঃ

প্রদত্ত উপাত্ত হতে গাণিতিক গড় নির্ণয়ের জন্য সারণি তৈরি করি।

মুনাফা	Xi	f_i	$u_i = (x_i -$	$f_i u_i$
(কোটি			a)/h	
টাকায়)				
0-10	5	7	-3	-21
10-20	15	12	-2	-24
20-30	25	22	-1	-22
30-40	35 = a	30	0	0
40-50	45	20	1	20
50-60	55	9	2	18
h = 10		n =		$\sum f_i u_i = -$
		100		29

			_
•	গাণিতিক	প্রাদ	V
• •	111111011	٠١٠,	Λ

$$= a + \left(\frac{\sum f_i U_i}{n}\right) \times h$$

$$= a + \left(\frac{\sum f_i U_i}{n}\right) \times h$$
$$= 35 + \left(\frac{-29}{100}\right) \times 10$$

= 32.1

উপাত্তের গাণিতিক গড় হতে গড় ব্যবধান নির্ণয়ঃ

এর জন্য নিচের সারণিটি প্রস্তুত করি যেখানে, $\bar{X} = 32.1$

মুনাফা	Xi	f_i	x _i - X	$f_i x_i - X\overline{ }$
(কোটি				
টাকায়)				
0-10	5	7	-27.1	189.7
10-20	15	12	-17.1	205.2
20-30	25	22	-7.1	156.2
30-40	35	30	2.9	87
40-50	45	20	12.9	258
50-60	55	9	22.9	206.1
h=10	·	n=100		$\sum f_i x_i - \vec{X} = 1102.2$

[.] গাণিতিক গড় হতে নির্ণীত গড় ব্যবধান

$$= \frac{\sum f_i(x_i - \bar{x})}{n}$$

$$= \frac{1102.2}{100}$$

= 11.022

আবার,

উপাত্তের গাণিতিক গড় হতে পরিমিত ব্যবধান নির্ণয়ঃ

এর জন্য নিচের সারণিটি প্রস্তুত করি যেখানে, $\bar{X} = 32.1$

মুনাফা	Xi	f_i	$(x_i - X\overline{)}^2$	$f_i(x_i - X\overline{)}^2$
(কোটি				
টাকায়)				
0-10	5	7	734.41	5140.87
10-20	15	12	292.41	3508.92
20-30	25	22	50.41	1109.02
30-40	35	30	8.41	252.3
40-50	45	20	166.41	3328.2
50-60	55	9	524.41	4719.69
h=10		n=100		$\sum f_i(x_i - \overline{X})^2 =$
				18059

- $\cdot \cdot \sigma^2$
- $= \frac{\sum f_i(x_i \bar{x})^2}{n}$
- $=\frac{18059}{100}$
- = 180.59
- ∴ গাণিতিক গড় হতে নিৰ্ণীত পরিমিত ব্যবধান = √180.59 = 13.438 (প্রায়)