

অনুক্রম ও ধারা-২

গ) মোট কতগুলো টাইলস প্রয়োজন হবে?

সমাধানঃসমবাহু ত্রিভুজাকৃতি মোজাইক এর বাহুর দৈর্ঘ্য=12 ফুট। ∴সমবাহু ত্রিভুজাকৃতি মোজাইক এর ক্ষেত্রফল= $\sqrt{\frac{3}{4}}$. $(12)^2$ বর্গ ফুট। আবার,

সুষম ত্রিভুজাকৃতি টাইলস এর বাহুর দৈর্ঘ্য = 12 ইঞ্চি = 1 ফুট। \therefore সুষম ত্রিভুজাকৃতি টাইলস এর ক্ষেত্রফল = $\sqrt[4]{4}$. $(1)^2$ বর্গ ফুট। অর্থাৎ,

সমবাহু ত্রিভুজাকৃতি মোজাইক সম্পূর্ণ করতে সুষম ত্রিভুজাকৃতি টাইলস লাগবে $\frac{\sqrt{\frac{3}{4}\cdot(12)^2}}{\sqrt{\frac{3}{4}\cdot(1)^2}}$ = $(12)^2$ টি = 144 টি ।

৫. ছকের খালি ঘরগুলো পূরণ করো।

[বি.দ্রঃ অনুক্রম ও ধারা অধ্যায়ের এই ৫ নং সমস্যার ছক পূরণ করেই প্রকাশ করা হলো। কিভাবে ছক এ উত্তর বসানো হয়েছে তা ছকের নিচে সূত্র সহকারে বিস্তারিত দেয়া হয়েছে।]

ক্রমিক	১ ম	সাধারণ	পদসংখ্যা	nতম	সমষ্টি
নং	পদ	অনুপাত	n	পদ	S_n
	a	r		a_n	
i.	128	1/2	9	1/2	$^{511}/_{2}$
ii.	1	-3	8	-2187	-1640
iii.	$^{1}/_{\sqrt{2}}$	-√2	9	8√2	$(^{31}/_{\sqrt{2}}$ -
					7)
iv.	2	-2	7	128	86
v.	2	2	7	128	254
vi.	12	2	7	768	1524
vii.	27	1/3	5	1/3	$^{121}/_{3}$
viii.	3	4	6	3072	4095

সমাধানঃ

$$i)a_n = ar^{n-1}$$

বা,
$$(\frac{1}{2})^{n-1} = \frac{1}{256}$$

আবার,

$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$S_n = 128(1 - \frac{1}{2})^9$$
 ÷ $(1 - \frac{1}{2})$ [মান বসিয়ে..]

বা,
$$S_n = 128(1-\frac{1}{512}) \div \frac{1}{2}$$

বা,
$$S_n = 128(^{511}/_{512}) \times 2$$

:
$$S_n = \frac{511}{2}$$

$$ii)a_n = ar^{n-1}$$

এবং
$$S_n = a(1-r^n) \div (1-r)$$

$$S_n = 1\{1-(-3)^8\} \div \{1-(-3)\}$$
 [মান বসিয়ে..]

$$S_n = (1-6561) \div 4$$

$$S_n = -6560 \div 4$$

$$S_n = -1640$$

iii)
$$a_n = ar^{n-1}$$

বা,
$$8\sqrt{2} = (\frac{1}{\sqrt{2}})(-\sqrt{2})^{n-1}$$
[মান বসিয়ে..]

বা,
$$8\sqrt{2} \times \sqrt{2} = (-\sqrt{2})^{n-1}$$

제.
$$16 = (-\sqrt{2})^{n-1}$$

বা,
$$(-\sqrt{2})^{n-1} = (-\sqrt{2})^8$$

আবার,
$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$S_n = (\frac{1}{\sqrt{2}})\{1-(-\sqrt{2})^9\} \div \{1-(-\sqrt{2})\}$$
 [মান বসিয়ে]

$$\overline{A}$$
, $S_n = (\frac{1}{\sqrt{2}})\{1^9 - (-\sqrt{2})^9\} \div \{1 - (-\sqrt{2})\}$

বা,
$$S_n = (\frac{1}{\sqrt{2}})[\{(1^3 - (-\sqrt{2})^3)\}\{(1^3)^2 + 1^3 \cdot (-\sqrt{2})^3 + \{(-\sqrt{2})^3\}^2] \div$$

$$\{1-(-\sqrt{2})\}$$
 [সূত্র $a^3-b^3=(a-b)(a^2+ab+b^2$ ব্যবহার করে]

বা,
$$S_n = (\frac{1}{\sqrt{2}})[\{1-(-\sqrt{2})\}\{1^2+1.(-\sqrt{2})+(-\sqrt{2})^2\}\{1-2\sqrt{2}+8\}]$$

$$\div \{1-(-\sqrt{2})\}$$
 [সূত্র $a^3-b^3=(a-b)(a^2+ab+b^2)$ ব্যবহার করে]

বা,
$$S_n = (\frac{1}{\sqrt{2}})[\{1-(-\sqrt{2})\}(1-\sqrt{2}+2)\{1-2\sqrt{2}+8\}\div\{1-(-\sqrt{2})\}$$

$$\overline{A}$$
, $S_n = (\frac{1}{\sqrt{2}})(1 - \sqrt{2} + 2)(1 - 2\sqrt{2} + 8)$

বা,
$$S_n = (\frac{1}{\sqrt{2}})(1 - \sqrt{2} + 2 - 2\sqrt{2} + 4 + 4\sqrt{2} + 8 - 8\sqrt{2} + 16)$$

$$\overline{4}$$
, $S_n = (\frac{1}{\sqrt{2}})(-7\sqrt{2} + 31)$

বা,
$$S_n = (\frac{1}{\sqrt{2}})(31-7\sqrt{2})$$

$$\therefore S_n = \left(\frac{31}{\sqrt{2}} \right)$$

iv)
$$a_n = ar^{n-1}$$

বা,
$$S_n = 2\{1-(-2)^7\} \div \{1-(-2)\}$$

বা,
$$S_n = 2\{1-(-128)\} \div (1+2)$$

বা,
$$S_n = 2(1+128) \div (1+2)$$

বা,
$$S_n = 2 \times 129 \div 3$$

$$∴S_n = 86$$

v) $S_n = a(1-r^n) \div (1-r)$

বা,
$$254 = 2(1-2^n) \div (1-2)$$

বা,
$$254 = 2(1-2^n) \div (-1)$$

বা,
$$254 = -2(1-2^n)$$

বা,
$$1-2^n = -127$$

বা,
$$-2^n = -128$$

বা,
$$2^n = 2^7$$
∴ $n = 7$

আবার,
$$a_n = ar^{n-1}$$

বা,
$$a_n = 2.2^{7-1}$$

∴
$$a_n = 128$$

$vi)a_n = ar^{n-1}$

বা,
$$r^{n-1} = \frac{768}{12}$$

$$\therefore$$
rⁿ=64r(i)

$$\overline{4}$$
, $(1-r^n) \div (1-r) = \frac{1524}{12}$

বা,
$$(1-r^n) \div (1-r) = 127$$

বা,
$$1-r^n = 127-127r$$

বা,
$$-r^n = 127-127r - 1$$

$$64r = 127r - 126$$

বা,
$$r = {}^{126}/_{63}$$

$$r = 2$$

এখন, r এর মান (i) নং এ বসিয়ে পাই,

$$2^{n} = 64 \times 2$$

বা,
$$2^n = 2^7$$
∴ $n = 7$

$vii)a_n = ar^{n-1}$

বা,
$$\frac{1}{3} = 27(\frac{1}{3})^{n-1}$$

বা,
$$27(^{1}/_{3})^{n-1} = ^{1}/_{3}$$

বা,
$$(^1/_3)^{n-1} = ^1/_{3\times 27}$$

বা,
$$(^1/_3)^{n-1} = ^1/_{81}$$

বা,
$$(^1/_3)^{n-1} = (^1/_3)^4$$

এবং,
$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$S_n = 27\{1-(1/3)^5\} \div (1-1/3)$$

বা,
$$S_n = 27\{1-\frac{1}{243}\} \div (1-\frac{1}{3})$$

বা,
$$S_n = (27^{-27}/_{243}) \div (1^{-1}/_3)$$

$$\overline{A}$$
, $S_n = (27-\frac{1}{9}) \div (1-\frac{1}{3})$

বা,
$$S_n = \frac{242}{9} \div \frac{2}{3}$$

বা,
$$S_n = \frac{242}{9} \times \frac{3}{2}$$

বা,
$$S_n = \frac{121}{3}$$

viii) $S_n = a(1-r^n) \div (1-r)$

বা,
$$a = {}^{4095}/_{1365}$$

$$\therefore$$
 a = 3

আবার,
$$a_n = ar^{n-1}$$

বা,
$$a_n = 3.4^{6-1}$$

বা,
$$a_n = 3.4^5$$

$$\therefore$$
 $a_n = 3072$

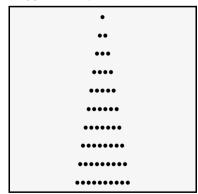
&.

চিত্ৰ নং	চিত্ৰ	কয়েন সংখ্যা	
1	•	1	
2		3	
3		6	
4	****	10	
,			

ক) ছক- ১ এর অনুক্রমটি নিবিড়ভাবে পর্যবেক্ষণ করো। অতঃপর ১০ম চিত্রটি গঠন করে কয়েন সংখ্যা নির্ণয় করো।

সমাধানঃছক – ১ এর অনক্রমের চিত্রটি পর্যবেক্ষন করি। প্রতিটি চিত্রে, চিত্র সংখ্যার সমান সংখ্যক কয়েন এর সারি আছে, এক সারি থেকে অপর সারিতে কয়েনের বৃদ্ধির হার 1 এবং ১ম সারিতে 1টি মাত্র কয়েন আছে।

তাহলে ১০ম চিত্রে


কয়েন এর সারি সংখ্যা n = 10

সারি থেকে সারিতে কয়েনের বৃদ্ধির হার বা সাধারণ অন্তরd= 1 ১ম সারিতে কয়েনের সংখ্যা a = 1

অতএব,১০ম চিত্রে মোট কয়েন এর সংখ্যা S,

- $= \frac{1}{2}.n\{2a + (n 1)d\}$
- $= \frac{1}{2}.10(2.1+(10-1)1)$
- = 5(2+9.1)
- = 5(2+9)
- $= 5 \times 11$
- = 55

ফলে, দশম পদ 55 এর জন্য চিত্রটি নিন্মরুপঃ

খ) প্রদত্ত তথ্যের আলোকে nতম চিত্রের কয়েন সংখ্যা নির্ণয়

সমাধানঃছক – ১ এর অনুক্রমের চিত্রটি পর্যবেক্ষন করি। প্রতিটি চিত্রে, চিত্র সংখ্যার সমান সংখ্যক কয়েন এর সারি আছে, এক

সারি থেকে অপর সারিতে কয়েনের বৃদ্ধির হার 1 এবং ১ম সারিতে 1টি মাত্র কয়েন আছে।

তাহলে,nতম চিত্রে,কয়েন ৰ্ সারি থেকে সারিতে কয়েনের 2 ১ম সারিতে কয়েনের স

ছক – ২

 $= \frac{1}{2}.n\{2a + (n - 1)d^{-1}\}$

 $= \frac{1}{2}.n\{2.1 + (n - 1)\}$

 $= \frac{1}{2}.n\{2 + (n - 1)\}$

 $= \frac{1}{2}.n(2 + n - 1)$

 $= \frac{1}{2}.n(n + 1)$ [Ans.]

গ) n = 5 रल, ছক-২ এর ২য় কলামের সংখ্যাগুলো নির্ণয় করো এবং দেখাও যে, nতম সারির সংখ্যাগুলোর সমষ্টি 2^n সূত্রকে সমর্থন করে।

সমাধানঃছক – ২ পর্যবেক্ষন করে পাই,

প্রতিটি সারিতে ১ম ও শেষ সংখ্যা হলো 1 এবং মাঝের সংখ্যাগুলো হলো পূর্বের সারির পাশাপাশি দুইটি সংখ্যার যোগফলের সমান।

সেইঅনুসারে, n = 5 এর ক্ষেত্রে আমরা পাই,

n	সারির সংখ্যাগুলো
4	14641
5	1 5 10 10 5 1

অতএব,n = 5 হলে,

ছক-২ এর ২য় কলামের সংখ্যাগুলোঃ 1, 5, 10, 10, 5, 1

nতম সারির সংখ্যাগুলোর সমষ্টিঃ

 λ ম সারির সংখ্যাগুলোর সমষ্টি = 2 = 2^1

২য় সারির সংখ্যাগুলোর সমষ্টি = $4 = 2^2$

ত্যু সারির সংখ্যাগুলোর সমষ্টি = $8 = 2^3$

8র্থ সারির সংখ্যাগুলোর সমষ্টি = $16 = 2^4$

∴nতম সারির সংখ্যাগুলোর সমষ্টি = 2^n [দেখানো হলো]

ঘ) প্রতিটি সারির সমষ্টিগুলো নিয়ে একটি ধারা তৈরি করো এবং ধারাটির ১ম n সংখ্যক পদের সমষ্টি 2046 হলে. n এর মান নির্ণয় করো।

সমাধানঃপ্রতিটি সারির সমষ্টিগুলো নিয়ে একটি ধারা তৈরি করা হলো যা নিন্মরুপঃ

এখন,ধারাটিতে, ১ম পদ a = 2

সাধারণ অনুপাত $r = 4 \div 2 = 2$

আমরা জানি,
$$S_n = a(1-r^n) \div (1-r)$$

বা,
$$2046 = -2(1-2^n)$$

বা,
$$-2^n = -1023 - 1$$

বা,
$$-2^n = -1024$$

বা.
$$2^n = 1024$$

বা,
$$2^n = 2^{10}$$

$$\therefore$$
 n = 10

৭. n এর মান নির্ণয় করো, যেখানে $n \in N$.

[বিদ্রঃ \sum এর উপর n এবং নিচে k=1 সাইটে লেখা না যাওয়ায় শুধুমাত্র \sum দ্বারা প্রকাশ করেছি; তোমরা পাঠ্যপুস্তক অনুসারে লিখবে।]

i)
$$\sum (20 - 4k) = -20$$

সমাধানঃএখানে, k = 1, 2, 3, n

$$4.1/2.n\{2.1 + (n - 1)1\} = -20$$

বা,
$$20n - 2.n(2 + n - 1) = -20$$

$$\overline{1}$$
, $20n - 2n(n + 1) = -20$

বা,
$$20n - 2n^2 - 2n = -20$$

বা,
$$-2n^2 + 18n = -20$$

বা,
$$-2n^2 + 18n + 20 = 0$$

বা,
$$2n^2$$
- 18n -20 = 0

বা,
$$n^2 - 9n - 10 = 0$$

বা,
$$n^2 - 10n + n - 10 = 0$$

$$\therefore$$
 n+1 = 0

∴ n=10

[n এর মান ঋনাত্মক হতে পারে না]

ii) $\sum (3k + 2) = 1105$

$$(3.1 + 2) + (3.2 + 2) + (3.3 + 2) + ... + (3.n + 2) = 1105$$

$$[S_n = \frac{1}{2}.n\{2a + (n - 1)d\}$$
 এর সূত্র প্রয়োগ করে]

$$\sqrt{3}$$
, $3.\frac{1}{2}$. $(n^2 + n) + 2n = 1105$

[উপয়পক্ষকে 2 দ্বারা গুণ করে]

বা,
$$3n^2 + 3n + 4n = 2210$$

বা,
$$3n^2$$
-78n + 85n - 2210 = 0

বা,
$$3n(n-26) + 85(n-26) = 0$$

∴ n= 26

[ঋণাত্মক মান গ্রহণযোগ্য নয়]

iii)
$$\sum (-8) \cdot (0.5)^{k-1} = -\frac{255}{16}$$

সমাধানঃএখানে, k = 1, 2, 3, n

$$(-8) \cdot (0.5)^{1-1} + (-8) \cdot (0.5)^{2-1} + (-8) \cdot (0.5)^{3-1} + \dots + (-8) \cdot (0.5)^{n-1} = -1000$$

$$^{255}/_{16}$$

বা, (-8).
$$\{(0.5)^0 + (0.5)^1 + (0.5)^2 + ... + (0.5)^{n-1}\} = -\frac{255}{16}$$

বা, (-8).
$$\{(0.5)^0 + (0.5)^1 + (0.5)^2 + ... + (0.5)^{n-1}\} = -\frac{255}{16}$$

বা,
$$(0.5)^0 + (0.5)^1 + (0.5)^2 + ... + (0.5)^{n-1} = {}^{255}/_{128}$$

বা,
$$\{(0.5)^0\}(1-0.5^n) \div (1-0.5) = {}^{255}/_{128}$$

$$[S_n = a(1-r^n) \div (1-r)$$
 সূত্রমতে]

বা,
$$1.(1-0.5^{\rm n}) \div 0.5 = {}^{255}/_{128}$$

বা,
$$(1-0.5^{\rm n}) \div 0.5 = {}^{255}/_{128}$$

বা,
$$(1-\frac{1}{2}^n)$$
 ÷ $\frac{1}{2}$ = $\frac{255}{128}$

$$\overline{1}$$
, $(1-\frac{1}{2}^n) = \frac{255}{256}$

বা,
$$-\frac{1}{2}^n = \frac{255}{256} - 1$$

বা,
$$-\frac{1}{2}^n = \frac{255}{256} - 1$$

বা,
$$-\frac{1}{2}^n = -\frac{1}{256}$$

বা,
$$\frac{1}{2}^n = \frac{1}{256}$$

iv)
$$\sum (3)^{k-1} = 3280$$

$$(3)^{1-1} + (3)^{2-1} + (3)^{3-1} + \dots + (3)^{n-1} = 3280$$

বা,
$$(3)^0 + (3)^1 + (3)^2 + \dots + (3)^{n-1} = 3280$$

বা,
$$(3)^0.(1-3^n) \div (1-3) = 3280$$

বা,
$$1-3^n = -6560$$

বা,
$$-3^n = -6560-1$$

বা,
$$-3^n = -6561$$

বা,
$$3^n = 6561$$

বা,
$$3^n = 3^8$$

$$\therefore$$
 n = 8

- ৮. একটি সমান্তর ধারার প্রথম, দ্বিতীয় ও ১০তম পদ যথাক্রমে একটি গুণোত্তর ধারার প্রথম, চতুর্থ ও ১৭তম পদের সমান।
- ক) সমান্তর ধারার ১ম পদ a, সাধারণ অন্তর d এবং গুণোত্তর সাধারণ অনুপাত r হলে, ধারা দুইটি সমম্বয়ে দুইটি সমীকরণ গঠন করো।

সমাধানঃসূত্র অনুসারে,

সমান্তর ধারার ক্ষেত্রে nতম পদ $a_n=a+(n-1)d$ গুণত্তর ধারার ক্ষেত্রে nতম পদ $b_n=a\cdot r^{(n-1)}$ প্রদত্ত সমান্তর ধারায়.

১ম পদ = a

২য় পদ = a+d

প্রদত্ত গুণোত্তর ধারায়,

১ম পদ = a

8ৰ্থ পদ = ar⁴⁻¹ = ar³

১৭তম পদ = ar¹⁷⁻¹= ar¹⁶

শর্ত অনুসারে,

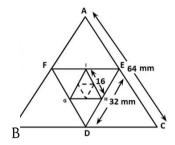
a+d = ar^3 [সমান্তরের ২য় পদ = গুণোত্তরের ৪র্থ পদ] a+9d = ar^{16} [সমান্তরের ১০ম পদ= গুণোত্তরের ১৭তম পদ]

খ) সাধারণ অনুপাত r এর মান নির্ণয় করো।

সমাধানঃ<mark>ক হতে পাই,a+d = ar³</mark>

বা, $1+^{d}/_{a} = r^{3} [a$ দ্বারা ভাগ করে] বা, $r = \sqrt[3]{(1+^{d}/_{a})}$ (i)

গ) শুণোত্তর ধারাটির ১০তম পদ 5120 হলে, a ও d এর মান নির্ণয় করো।


সমাধানঃ<mark>পরে দেয়া হবে.....</mark>

<u>ঘ) সমান্তর ধারাটির ১ম 20টি পদের সমষ্টি নির্ণয় করো।</u>

সমাধানঃপরে দেয়া হবে.....

৯. একটি সমবাহু ত্রিভুজ আঁকো। এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু ত্রিভুজ আঁকো।ওই ত্রিভুজের বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহু ত্রিভুজ আঁকো। এইভাবে পর্যায়ক্রমে ১০টি ত্রিভুজ অঙ্কন করলে এবং সর্ববহিস্থ ত্রিভুজটির প্রতি বাহুর দৈর্ঘ্য 64 মিমি হলে, সবগুলো ত্রিভুজের পরিসীমার সমষ্টি কত হবে নির্ণয় করো।

সমাধানঃ

একটি সমবাহু ত্রিভুজ ABC আঁকি যার প্রতি বাহুর দৈর্ঘ্য 64
মিমি অর্থাৎ ABC ত্রিভুজের পরিসীমা = 3×64mm = 192mm.
এখন ABC এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি
সমবাহু ত্রিভুজ DEF আঁকি। এখন আমরা জানি, ত্রিভূজের
যেকোনো দুইটি বাহুর মধ্যবিন্দুর সংযোজক সরলরেখা উহার
তৃতীয় বাহুর অর্ধেক। তাহলে, DF = ½AC = ½×64mm =
32mm. এখন, যেহেতু অঙ্কিত DEF সমবাহু ত্রিভুজ সেহেতু
DE=EF=DF=32mm অর্থাৎ DEF এর পরিসীমা = 3×32mm =
96mm. আবার, DEF এর বাহুগুলোর মধ্যবিন্দু সংযোগ করে
আরেকটি সমবাহু ত্রিভুজ GHI আঁকি। তাহলে, GH=HI=IG=
½×32mm = 16mm অর্থাৎ GHI এর পরিসীমা = 3×16mm
= 48mm. একইভাবে পর্যায়ক্রমে ১০টি ত্রিভুজ আঁকি।
এখন, এইভাবে পর্যায়ক্রমে যদি অসীম ত্রিভুজ আঁকা হয় তাহলে
আমরা ত্রিভুজগুলোর পরিসীমাগুলোকে একটি ধারা আকারে
লিখতে পারি যা নিন্মরুপঃ

ধারাটিতে, ১ম পদ a = 192

সাধারন অনুপাত r = 96 ÷ 192 = 1/2

তাহলে,এই ধারার nতম পদের সমষ্টি S_n

$$= a(1-r^n) \div (1-r)$$

$$= 192(1 - \frac{1}{2}^{n}) \div (1 - \frac{1}{2})$$

শর্তানুসারে, অঙ্কিত ত্রিভুজ সংখ্যা 10 অর্থাৎ n=10 এর ক্ষেত্রে, ধারাটির সমষ্টি

$$= 192(1 - \frac{1}{2}^{10}) \div (1 - \frac{1}{2})$$

$$= 192(1 - \frac{1}{2})^{10} \div \frac{1}{2}$$

$$= 384(1 - \frac{1}{2})^{10}$$

$$= 384(1-\frac{1}{1024})$$

$$= 384 - \frac{384}{1024}$$

$$= 384 - \frac{3}{8}$$

$$=\frac{384\times4-3}{8}$$

$$=\frac{3069}{8}$$
 N.N. (Ans.)

১০. শাহানা তার শিক্ষা প্রতিষ্ঠানে একটি চারা গাছ রোপণ করল। এক বছর পর চারা গাছটির উচ্চতা 1.5 ফুট হলো। পরবর্তী বছর এর উচ্চতা 0.75 ফুট বৃদ্ধি পেল। প্রতি বছর গাছটির উচ্চতা পূর্বের বছরের বৃদ্ধিপ্রাপ্ত উচ্চতার 50% বাড়ে। এভাবে বাড়তে থাকলে 20 বছর পরে গাছটির উচ্চতা কত ফুট হবে?

সমাধানঃ১ বছর পর চারা গাছটির উচ্চতা = 1.5 ফুট ২ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল = 0.75 ফুট ৩ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল= 0.75 এর 50% = 0.375 ফুট

৪ বছর পর চারা গাছটির উচ্চতা বৃদ্ধি পেল= 0.375এর 50% = 0.1875 ফুট

তাহলে, উচ্চতা বৃদ্ধির ধারাঃ 0.75 + 0.375 + 0.1875 + এখানে, a =0.75; r = 0.375 ÷ 0.75 =0.1875 ÷ 0.375 = ½; এবং, n = 19 কারণ গাছের বৃদ্ধি ২য় বছর থেকে শুরু হয়। তাহলে, nতম বছরে গাছের মোট বৃদ্ধির পরিমাণ S_n

$$= a(1-r^n) \div (1-r)$$

$$= 0.75(1 - \frac{1}{2})^{19} \div (1 - \frac{1}{2})$$

$$= 0.75(1 - \frac{1}{2})^{19} \div \frac{1}{2}$$

$$= 1.5(1 - \frac{1}{2})^{19}$$

$$= 1.5(1-\frac{1}{524288})$$

$$= 1.5(^{524287}/_{524288})$$

= 1.49999714 ফুট

তাহলে, ২০ বছরে গাছটির উচ্চতা হবে

= ১ম বছরেরের গাছের উচ্চতা + ১৯ বছরের গাছটির বৃদ্ধি

- = 1.5 + 1.49999714 ফুট
- = 2.99999714 ফুট
- ১১. তুমি তোমার পরিবারের গত ছয়় মাসের খরচের হিসাব জেনে নাও। প্রতি মাসের খরচকে একেকটি পদ বিবেচনা করে সম্ভব হলে একটি ধারায় রূপান্তর করো। তারপর নিচের সমস্যাগুলো সমাধানের চেষ্টা করো।
- ক) ধারা তৈরি করা সম্ভব হয়েছে কী? হলে, কোন ধরনের ধারা পেয়েছ ব্যাখা করো।

সমাধানঃ হ্যাঁ ধারা তোরি করা হয়েছে। আমি একটি সামন্তর ধারা পেয়েছি।

গত ছয় মাসে আমার পরিবারের খরচ নিম্মরুপঃ

মাস	খরচ (টাকা)
১ ম	6000
২য়	6200
৩ য়	6400
8র্থ	6600
৫ম	6800
৬ষ্ট	7000

এখানে, a = 6000; d = 6200 - 6000 = 200; n = 6; অর্থাৎ এটি একটি সমান্তর ধারা।

খ) ধারার সমষ্টিকে একটি সমীকরণের মাধ্যমে প্রকাশ করো।

সমাধানঃউপরোক্ত তথ্য হতে আমরা যে ধারাটি পাই তা নিশারুপঃ6000 + 6200 + 6400 +

$$= a + (a+d) + (a+d+d) + ...$$

[১ম পদ, 6000 = a, সাধারন অন্তর 200 = d ধরে]

= an + d{(1+2+3+... (n-1)}

$$= \frac{2an}{2} + d.^{n}/_{2}(n-1)$$

- $= \frac{1}{2}n\{2a+(n-1)d\}$
- = ধারার সমষ্টি S_n

অতএব, প্রাপ্ত সমীকরণ, $S_n = \frac{1}{2}.n\{2a + (n-1)d\}$

গ) পরবর্তী ছয় মাসে সম্ভাব্য মোট কত খরচ হতে পারে তা নির্ণয় করো।

সমাধানঃউপরোক্ত তথ্য হতে,

পরবর্তি ১ম মাসের খরচ = 7000 + 200 = 7200

- · পরবর্তী ছয় মাসের মোট খরচ
 - $= \frac{1}{2}.n\{2a + (n 1)d\}$
 - $= \frac{1}{2}.6\{2.7000 + (6 1)200\}$
 - $=3(14000 + 5 \times 200)$
 - =3(14000 + 1000)
 - = 3×15000
 - = 45000 টাকা।
- ঘ) পরিবারের মাসিক/বার্ষিক খরচ সম্পর্কে তোমার উপলব্ধিবোধ লিপিবদ্ধ করো।

সমাধানঃপারিবারিক খরচ সম্পর্কে আমার উপলব্ধি হলো বর্তমান বাজার ব্যবস্থায় আমাদের খরচ দিন দিন বৃদ্ধি পাচ্ছে।