অনুক্রম ও ধারা

এই অভিজ্ঞতায় শিখতে পারবে-

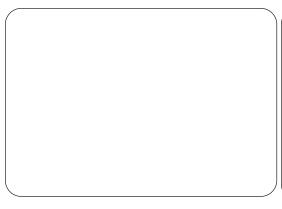
- অনুক্রম
- সমান্তর অনুক্রম
- গুণোত্তর অনুক্রম
- ফিবোনাচ্চি অনুক্রম
- ধারা
- সমান্তর ধারা
- পুণোত্তর ধারা

অনুক্রম ও ধারা

তোমার প্রাত্যহিক জীবনে 'ক্রম' শব্দটি বহুল পরিচিতি একটি শব্দ, তাই না? প্রতিদিন কত জিনিসই না তোমাকে ক্রমানুসারে সাজাতে হয়। তোমার পড়ার টেবিল বা পাশের বুক সেলফটির কথা ভাবো। আকারে সবচেয়ে বড় বইগুলো নিশ্চয়ই সবার নিচে রেখেছ। তারপর ক্রমানুসারে ছোটগুলো উপরের দিকে তাক করে রাখা আছে। তোমার স্কুলের ক্রাস শুরুর আগে তোমাদেরকে সমাবেশে অংশগ্রহণ করতে হয়। খেয়াল করেছ কি তোমাদের প্রতিটি কলামে দাঁড়ানোর ক্ষেত্রে একটি নিয়ম মানতে হয়। তোমাদেরকে তোমাদের উচ্চতার ক্রম অনুসারে দাঁড়াতে হয়। সমাবেশ শেষে ক্রাসে যাওয়ার পরই শ্রেণিশিক্ষক তোমাদের উপস্থিতি নেন। তোমাদের রোল নম্বর কীভাবে সাজানো? নিশ্চয়ই ক্রমানুসারে, তাই না? এত গেল তোমার স্কুলের কথা, তুমি বাজারে গিয়ে নিশ্চয়ই লক্ষ করেছ, কোনো কোনো দোকানি দোকানের জিনিসপত্র নানান রকমে সাজিয়ে রাখেন। যেমন: ফলের দোকানদার আপেল, কমলা সুষম পিরামিডের মতো সাজিয়ে রাখেন। হাঁড়ি-পাতিল, থালা-বাসন, বালতি-মগ বিক্রেতারাও তাদের দ্রব্যাদি বড় থেকে উপরের দিকে ক্রমানুসারে ছোটো আকারে সাজিয়ে রাখেন। খেলার মাঠের গ্যালারির আসন ব্যবস্থার কথা চিন্তা করো। এমনকি সিনেমা হলে দর্শকদের বসার ক্রম? নিচের ছবি দৃটি নিবিড়ভাবে পর্যবেক্ষণ করো।

আসন ব্যবস্থা ও মাটির পাতিলগুলোর মধ্যে কোনো বৈশিষ্ট্য আছে কী? সহপাঠীর সাথে আলাপ-আলোচনা করো। তোমরা কী কী বৈশিষ্ট্য খুঁজে পেলে তা নিচের খালি বক্সে লেখো।

আমরা আমাদের চারপাশে নানাবিধ ক্ষেত্রে বিভিন্ন ধরনের ক্রম দেখে থাকি। আর এই ক্রম থেকেই মূলত অনুক্রমের ধারণাটি এসেছে। তাছাড়া তোমরা ইতোমধ্যেই সংখ্যা পদ্ধতি সম্পর্কে অনেক কিছুই জেনেছ। যেমন: স্বাভাবিক সংখ্যা $1, 2, 3, 4, \ldots$ এর কথা ভাবতে পার। সংখ্যাগুলো ক্রমানুসারে সাজানো ছাড়াও আরও বিশেষ বৈশিষ্ট্য থাকতে পারে। ভেবে দেখো তো আর কী কী বৈশিষ্ট্য আছে? বৈশিষ্ট্যগুলো নিচের খালি বক্সে ন্যটপট লিখে ফেলো:



দুইটি মজার খেলা

১. হাত খরচ প্রাম্ভির খেলা

মনে করো, তোমাকে এক মাসের জন্য প্রতিদিন কিছু হাত খরচ দেয়া হবে। হাত খরচ প্রাপ্তির জন্য তোমাকে তিনটি বিকল্প দেওয়া হলো যার মধ্য থেকে যে কোনো একটি তোমাকে বেছে নিতে হবে। বিকল্পগুলো নিম্নরূপ:

- ক) প্রতিদিন 10 টাকা
- খ) মাসের প্রথম দিন 3 টাকা, দ্বিতীয় দিন 3.50 টাকা, তৃতীয় দিন 4 টাকা, এভাবে প্রতিদিন 50 পয়সা করে বৃদ্ধি পাবে
- গ) মাসের প্রথম দিন 1 টাকা, দ্বিতীয় দিন 2 টাকা, তৃতীয় দিন 4 টাকা, এভাবে প্রতিদিন আগের দিনের দিগুণ করে বৃদ্ধি পাবে

এই তিনটি বিকল্পের মধ্য থেকে তুমি কোনটি বেছে নিবে এবং কেন নিবে তা যুক্তি ও ব্যাখ্যাসহ তোমাকে উপস্থাপন করতে হবে।

২. মৌলিক সংখ্যার খেলা

কমপক্ষে তিনটি মৌলিক সংখ্যা খুঁজে বের করতে হবে। শর্ত হলো: পাশাপাশি দুইটি সংখ্যার পার্থক্য সাধারণ বা একই হতে হবে এবং শর্ত মেনে খালি ঘরপুলো পূরণ করতে হবে। যদি শর্ত মেনে তিনটি সংখ্যা না পাওয়া যায়, তবে তার কারণ ব্যাখ্যা করো।

সাধারণ পার্থক্য	১ম সংখ্যা	২য় সংখ্যা	৩য় সংখ্যা	••••
2	3	5	7	
4				
9				
10				
14				
20				

এতক্ষণ তোমরা যে বিষয়পুলো নিয়ে ভাবনা-চিন্তা করলে তার প্রতিক্ষেত্রে প্রাপ্ত সংখ্যা বা বস্তুপুলো সাজানোর মধ্যে বিশেষ বৈশিষ্ট্য আছে, তাই না? এই বৈশিষ্ট্য বা নিয়মটিকেই আমরা প্যাটার্ন বলে থাকি। পূর্বের শ্রেণিতে প্যাটার্ন সম্পর্কে তোমরা জেনেছ।

তোমার হাত খরচ প্রাপ্তির মজার খেলার মধ্যে-

ক)-এ মাসের প্রতিদিন যে হাত খরচ পেয়েছ তা নিম্নরূপ।

দিন	1	2	3	4	•••	30
টাকা	10	10	10	10		10

খ)-এ মাসের প্রতিদিন যে হাত খরচ পেয়েছ তা নিম্মরপ।

দিন	1	2	3	4	• • •	30
টাকা	3.00	3.50	4.00	4.50	•••	18.50

গ)-এ মাসের প্রতিদিন যে হাত খরচ পেয়েছ তা নিম্নরূপ।

দিন	1	2	3	4	•••	30
টাকা	1	2	4	8	•••	536,870,912

উপরের উদাহারণগুলো লক্ষ করলে দেখতে পাবে যে, প্রতি ক্ষেত্রেই হাত খরচ প্রাপ্তির অর্থ দিনের সংখ্যার $\{1,2,3,4...30\}$ সাথে সম্পর্কযুক্ত। দিনের সংখ্যা $\{1,2,3,4...30\}$ হলো স্বাভাবিক সংখ্যার একটি সসীম সেট। এখানে দিনের সংখ্যার সাথে টাকার পরিমাণের একটি সম্পর্ক আছে। এই সম্পর্কটিই একটি অনুক্রম।

স্বাভাবিক সংখ্যার সেটের সাথে অন্য একটি সংগ্রহের সম্পর্ককে অনুক্রম বলা হয়।

উপরের উদাহরণে প্রতিদিনের সাপেক্ষে টাকার পরিমাণের সংগ্রহ হলো একেকটি অনুক্রম। কোনো অনুক্রমের প্রতিটি উপাদানকে এর একেকটি পদ বলে। অনুক্রমের প্রথম উপাদানটিকে প্রথম পদ, দ্বিতীয়টিকে দ্বিতীয় পদ, তৃতীয়টিকে তৃতীয় পদ, এভাবে ক্রমানুসারে পদগুলোর নামকরণ করা হয়। যে কোনো স্বাভাবিক সংখ্যা n এর জন্য, অনুক্রমের সাধারণ পদকে n-তম পদ বলা হয়। যদি কোনো অনুক্রমের প্রথম পদ a_1 , দ্বিতীয় পদ a_2 , তৃতীয় পদ a_3 , ... এবং nতম পদ a_n হয় তবে, অনুক্রমিটি লিখতে পারি, a_1 , a_2 , a_3 , ..., a_n , ...। একে (a_n) দ্বারা নির্দেশ করা হয়।

উদাহরণ ০১:

1, 1, 1, 1, ..., 1, ... একটি অনুক্রম যার n-তম পদ $a_n = 1$ । এটি একটি ধ্রুবক অনুক্রম। তোমরা কি এর কারণ বলতে পারবে? একটু খেয়াল করে দেখো, এই অনুক্রমের প্রত্যেকটি পদ একই। এর কোনো পরিবর্তন নেই। এই ধরনের অনুক্রমকে ধ্রুবক অনুক্রম (constant sequence) বলে।

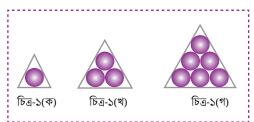
একক কাজ

ধ্বক অনুক্রমের দুইটি উদাহরণ দাও এবং প্রত্যেকটির n-তম পদ লেখো।

উদাহরণ ০২: $1,-1,1,-1,\ldots$ একটি অনুক্রম যার n-তম পদ $a_{_n}=(-1)^{\mathbf{n}+1}$ । একে $((-1)^{\mathbf{n}+1})$ দ্বারা নির্দেশ করা হয়। এটি একটি পর্যায়ক্রমিক অনুক্রম। তোমরা কি এর কারণ বলতে পারবে? একটু খেয়াল করে দেখো, এই অনুক্রমের পদগুলো কীভাবে আসছে? এখানে দুইটি পদ পর্যায়ক্রমিকভাবে ফিরে আসছে। এজন্য এই ধরনের অনুক্রমকে পর্যায়ক্রমিক অনুক্রম বলে। বাস্তব জীবনে প্রতিদিন যে জোয়ার-ভাটা হয়, তা একটি পর্যায়ক্রমিক অনুক্রমের উদাহরণ।

একক কাজ: পর্যায়ক্রমিক অনুক্রমের দুইটি উদাহরণ দাও এবং প্রত্যেকটির n-তম পদ লেখো।

উদাহরণ ০৩: 1, 3, 6, 10,... একটি অনুক্রম। একে সমবাহ ত্রিভুজ সংখ্যার অনুক্রম বলে, কারণ অনুক্রমের পদগ্লো পাশের চিত্রের সমবাহ ত্রিভুজ আকৃতির বলের সংখ্যা থেকে এসেছে।



একক কাজ

বর্গাকার সংখ্যার অনুক্রমটি লেখো এবং বর্গের সাহায্যে চিত্রিত করো।

উদাহরণ ০৪: 1,3,5,7,..., $(2n-1),\ldots$ একটি অনুক্রম যার n-তম পদ $a_{_n}=2n-1$ । এটি বিজোড় সংখ্যার অনুক্রম।

উদাহরণ ০৫: $\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\ldots,\frac{n}{n+1},\ldots$ একটি অনুক্রম যার n-তম পদ $a_n=\frac{n}{n+1}$. একে $\left(\frac{n}{n+1}\right)$ দ্বারা নির্দেশ করা হয়।

উদাহরণ ০৬: $1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \ldots, \frac{n}{2n-1} \ldots$ একটি অনুক্রম যার n-তম পদ $a_n = \frac{n}{2n-1}$. বলো তো একে কী দ্বারা নির্দেশ করা হবে?

জোড়ায় কাজ

- নিচের অনুক্রমগুলোর সাধারণ পদ নির্ণয় করো:
 - i) 3, 6, 9,...
- ii) 5, -25, 125, -625, ...
- iii) $\frac{1}{2}$, $-\frac{2}{3}$, $\frac{3}{4}$, $-\frac{4}{5}$, ... iv) $\frac{1}{2}$, $\frac{1}{2^2}$, $\frac{1}{2^3}$, $\frac{4}{2^4}$...
- খ) প্রদত্ত সাধারণ পদ থেকে অনুক্রমগুলো নির্ণয় করো:
- i) $\frac{n-1}{n+1}$ ii) $(-1)^{n+1} \frac{n}{n+1}$ iii) $(-1)^{n-1} \frac{n}{2n+1}$ iv) $\frac{n^2}{2n^2-1}$

অনুক্রমের প্রকারভেদ



উল্লেখ্য, অনুক্রমের পদ সংখ্যা সসীম ও অসীম উভয়ই হতে পারে। যে অনুক্রমের পদ সংখ্যা নির্দিষ্ট অর্থাৎ যার শেষ পদ আছে, তাকে সসীম অনুক্রম (Finite Sequence) বলে। আর যে অনুক্রমের পদ সংখ্যা অনির্দিষ্ট অর্থাৎ যার শেষ পদ নেই, তাকে অসীম অনুক্রম (Infinite Sequence) বলা হয়।

উদাহরণ

সসীম অনুক্রম	অসীম অনুক্রম
i) 1, 4, 9,, 100	i) 3, 1, -1, -3,
ii) 7, 12, 17,, 502	ii) $1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \dots$
iii) $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{10}$,, $\frac{1}{10001}$	iii) 5 এর গুণিতক = 5, 10, 15,
iv) রবিবার, সোমবার, মঞালবার,, শনিবার	${ m iv}$) গণনাকারী সংখ্যা $=1,2,3,\dots$

মাথা খাটাও

অনুক্রমের পরের পদগুলো নির্ণয় করো:

- i) -1, 2, 5, 8, ____, ___, ___. ii) 3.4, 4.5, 5.6, ____, ____, ____.

চলো প্রথমে কয়েকটি ঘটনা বিশ্লেষণ করে দেখি:

ঘটনা ১

খাতার উপর ম্যাচের কাঠি বসিয়ে নিচের মতো প্যাটার্ন তৈরি করো:

এবার নিচের প্রশ্নগুলোর উত্তর জানার চেষ্টা করো:

i) প্রতিটি চিত্রের জন্য কয়টি করে কাঠির প্রয়োজন? সংখ্যাগুলো ক্রমানুসারে পাশের ঘরে লেখো:	,,
ii) পাশাপাশি দুইটি সংখ্যার পার্থক্য নির্ণয় করে পাশের ঘরে লেখো।	
iii) সংখ্যাগুলোর মধ্যে কোনো সাধারণ বৈশিষ্ট্য পেয়েছ কি? পাশের ঘরে তোমার মন্তব্য লেখো।	

ঘটনা - ২

ধরো, পড়াশোনা শেষ করে তুমি একটি চাকুরিতে যোগদান করলে। তোমার প্রারম্ভিক মাসেক বেতন 25,000 টাকা এবং বার্ষিক প্রবৃদ্ধি (Increment) 500 টাকা। তাহলে, ১ম, ২য় এবং ৩য় বছরে তোমার মাসিক বেতন হবে যথাক্রমে 25,000 টাকা, 25,500 টাকা এবং 26,000 টাকা। এখন তুমি যদি পাশাপাশি দুই বছরের মাসিক বেতনের পার্থক্য হিসাব করো, তাহলে দেখবে প্রতি বছর তোমার বেতন 500 টাকা করে বৃদ্ধি পাছে।

আচ্ছা, এই দুটি ঘটনা বা উদাহরণের মধ্যে কোনো বৈশিষ্ট্য কি লক্ষ করেছ? বৈশিষ্ট্যপুলো নিচের খালি ঘরে লেখো:

()

একক কাজ

নিচের অনুক্রমগুলো পর্যবেক্ষণ করো। প্রতিটি অনুক্রমের পদগুলোর মধ্যকার বৈশিষ্ট্য লেখো:						
ক্রমিক নং	অনুক্রম	বৈশিষ্ট্য				
i)	4, 7, 10, 13,					
ii)	-2, -6, -10, -14,					
iii)	$\frac{1}{2}$, 1, $\frac{3}{2}$, 2,					

কাজটি করে নিশ্চয়ই জানতে পারলে, প্রতিটি অনুক্রমের পাশাপাশি দুইটি পদের মধ্যে একটি সাধারণ পার্থক্য আছে, তাই না? প্রথম পদটির সাথে একটি নির্দিষ্ট সংখ্যা যোগ বা বিয়োগ হয়ে পরবর্তী পদটি তৈরি হয়েছে এবং অনুক্রমটির যে কোনো পদ থেকে পরের পদ তৈরিতে একই বৈশিষ্ট্য বিদ্যমান আছে। যে অনুক্রম এই ধরনের বৈশিষ্ট্য মেনে চলে, তাকে আমরা সমান্তর অনুক্রম (Arithmetic Sequence) বলে থাকি। সমান্তর অনুক্রমের প্রথম পদটিকে a_1 এবং সাধারণ অন্তরকে d দ্বারা প্রকাশ করা হয়। তাহলে, একটি সমান্তর অনুক্রমের বীজগণিতীয় রূপটি আমরা নিচের মতো লিখতে পারি:

সমান্তর অনুক্রমের বীজগণিতীয় রূপ

$$a, a + d, a + 2d, a + 3d, ...$$

অনুক্রমটির প্রথম পদ a এবং সাধারণ অন্তর d কারণ –

২য় পদ
$$-$$
 ১ম পদ $= a + d - a = d$

৩য় পদ – ২য় পদ =
$$a + 2d - (a + d) = a + 2d - a - d = d$$

৪র্থ পদ – ৩য় পদ =
$$a + 3d - (a + 2d) = a + 3d - a - 2d = d$$

এভাবে যে কোনো পদ থেকে তার পূর্বের পদ বিয়োগ করলে d পাওয়া যাবে।

এবার বলো তো অনুক্রমটির সাধারণ পদ কী হবে? পর্যবেক্ষণ করে দেখো সাধারণ পদটি হবে,

$$a_n = a + (n - 1)d$$

দলগত কাজ

নিচের অনুক্রমগুলোর কোনটি সমান্তর ও কোনটি সমান্তর নয় তা দলের সকলে আলোচনা করে বের করো। নিচের ছকটিতে সঠিক উত্তরের জায়গায় টিক (√) চিহ্ন এবং অন্যথায় ক্রস (×) চিহ্ন দাও। তারপর শ্রেণিতে উপস্থাপন করো।

অনুক্রম	সমান্তর	সমান্তর নয়	সমান্তর হলে সাধারণ অন্তর	যৌক্তিক ব্যাখ্যা
i) -4, 3, 10, 17,				
ii) 1, 4, 9, 16,				
$iii) -\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, \dots$				
iv) $x - 3$, $x - 5$, $x - 7$,				

সমান্তর অনুক্রমের সাধারণ পদ বা nতম পদ নির্ণয়

নিচের অনুক্রমগুলোর সাধারণ অন্তর ও পরের তিনটি পদ নির্ণয় করো। তোমাদের জন্য একটি নির্ণয় করে দেওয়া হলো:

অনুক্রম	সাধারণ অন্তর	পরের তিনটি পদসহ অনুক্রমটি
i) 4, 14, 24, 34		4, 14, 24, 34,,, _
ii) -4, -2, 0, 2	-2 - (-4) = 0 - (-2) = 2	-4, -2, 0, 2,,,
iii) $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, 1		$\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \dots, \dots, \dots$

তোমরা তো পরবর্তী তিনটি পদ খুব সহজেই বের করতে পারলে, তাই না? কিন্তু তোমাকে যদি 120তম বা 350তম পদ নির্ণয় করতে বলে, তুমি কি এভাবেই একটি একটি করে নির্ণয় করবে? ভেবে দেখো তো, কাজটি সহজ হবে কিনা?

তাহলে চলো, অনুসন্ধান করে দেখি কোনো অনুক্রমের সাধারণ পদ বা n-তম পদ নির্ণয় করা যায় কি না।

একটি উদাহরণ দেওয়া যাক।

3, 8, 13, 18,.....

নিশ্চয়ই এটি একটি সমান্তর অনুক্রম, তাই না?

এবার অনুক্রমের পদগুলোর মধ্যে কোন ধরনের বৈশিষ্ট্য আছে, চলো একটি একটি করে বিশ্লেষণ করি ও

তা থেকে কোনো সাধারণ সূত্র পাওয়া যায় কি না তালিকা করে অনুসন্ধান করি:

পদ	দেওয়া আছে	প্যাটার্ন	আমরা লিখতে পারি	সাধারণ পদ বা <i>n</i> -তম পদ
1	3	3	$\beta + \beta (0)$	$a_n = 3 + (n-1)$ 5
2	8	3+5	3+5(1)	
3	13	3+5+5	3+5(2)	n-তম ১ম পদ সাধারণ
4	18	3+5+5+5	3+5(3)	পদ $\left \begin{array}{c c} a_1 & \text{অন্তর, } d \end{array} \right $
				n-তম পদ
n	a_{n}	3+5+5+5+ 5+ ··· +5	3+5(n-1)	$a_n = a_1 + (n-1)d$

উদাহরণ-৭: $7, 11, 15, 19, \ldots$ অনুক্রমের nতম পদ নির্ণয় করো এবং nতম পদের সূত্র থেকে 15তম, 120তম পদ নির্ণয় করো।

সমাধান: প্রদত্ত 7, 11, 15, 19,... অনুক্রমটি একটি সমান্তর অনুক্রম। কারণ-

২য় পদ
$$-$$
 ১ম পদ $= 11 - 7 = 4$,

$$a_n = a_1 + (n-1)d$$

যেখানে, প্রথম পদ $=a_1=7$, পদ সংখ্যা=n এবং সাধারণ অন্তর =d=4

$$\therefore n$$
তম পদ $a_n = 7 + (n-1)4 = 7 + 4n - 4 = 4n + 3$

$$\therefore 15$$
তম পদ $a_{15} = 4 \times 15 + 3 = 63$

এবং
$$120$$
তম পদ $a_{120} = 4 \times 120 + 3 = 483$

মাথা খাটাও

 $7x+2,\,5x+12,\,2x-1$ একটি সমান্তর অনুক্রম হলে, x এর মান নির্ণয় করো।

একক কাজ

ক) নিচের সমান্তর অনুক্রমের সাধারণ পদ নির্ণয় করো।

i) 5, 12, 19, 26,... ii) 1, 0.5, 0, -0.5,... iii) যার ৭তম পদ -1 এবং ১৬তম পদ 17

খ) নিচের সমান্তর অনুক্রমের ফাঁকা পদগুলো নির্ণয় করো।

i) 6,_____, 54 . ii) _____, -3, 2, _____, 17.

দলগত কাজ

নিচের ৫টি বক্স-এর প্রতিটি থেকে একটি করে সংখ্যা নিয়ে সমান্তর অনুক্রম তৈরি করো। সহপাঠীদের সাথে তোমার তৈরি অনক্রমগুলো মিলিয়ে দেখো :

গুণোত্তর অনুক্রম (Geometric Sequence)

পুণোত্তর অনুক্রম আলোচনার শুরুতেই দুএকটি ঘটনার আলোকপাত করা যাক।

ঘটনা - ১

লিলি তার মায়ের জন্য একটি উপহার কিনতে চায়। উপহারটি কিনতে তার কমপক্ষে 300 টাকা লাগবে। লিলি পরিকল্পনা করে, সে নভেম্বরের প্রথম সপ্তাহ থেকে কিছু টাকা সঞ্চয় করতে থাকবে। প্রথম সপ্তাহে যত টাকা সঞ্চয় করবে পরের সপ্তাহে করবে তার দ্বিগুণ। পরিকল্পনা অনুযায়ী লিলি 5 টাকা দিয়ে সঞ্চয় শুরু করল। কত সপ্তাহ শেষে লিলি উপহারটি কিনতে পারবে?

এবার চলো হিসেবটি করে দেখি:

সপ্তাহ	٥	٤	٥	8	Œ	৬	মোট সঞ্চয়
TONT (That)	5	5× 2	10 × 2	20 × 2	40 × 2	80 × 2	215
সঞ্চয় (টাকা)	5	10	20	40	80	160	315

যেহেতু লিলির মোট 315 টাকা সঞ্চয় হবে, সেহেতু সে ছয় সপ্তাহ শেষে তার মায়ের জন্য উপহারটি কিনতে পারবে।

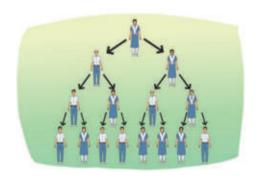
তোমরা নিশ্চয়ই লক্ষ করেছ, লিলির সঞ্চয় পরিকল্পনায় একটি বিশেষ বৈশিষ্ট্য আছে, তাই না? চলো আরও

একটু পর্যালোচনা করে দেখি। লক্ষ করো, এই সপ্তাহের সাপেক্ষে সঞ্চয়ের অনুক্রমের যে কোনো সংখ্যাকে তার আগের সংখ্যা দ্বারা ভাগ করলে ভাগফল একই (2) হয়। নিচে হিসাবটি করে দেখানো হলো।

$$\frac{10}{5} = 2$$
, $\frac{20}{10} = 2$, $\frac{40}{20} = 2$, $\frac{80}{40} = 2$, $\frac{160}{80} = 2$

ঘটনা ২: ভাইরাসের বিস্তার

আমরা অনেক সময় ভাইরাসজনিত বিভিন্ন রোগে আক্রান্ত হয়ে থাকি। ধরো, কোনো এক ভাইরাসজনিত রোগ এমনভাবে ছড়ায় যে প্রথমে একজন আক্রান্ত হয়, তারপর পাশের ছবির মতো ছড়াতে থাকে। ছবি দেখে রোগটি ছড়ানোর যে ক্রমটি পাওয়া গেল, তা হলো: $1, 2, 4, 8, \ldots$ যেখানে প্রথম পদটি ছাড়া প্রতিটি পদই তার পূর্বের পদের দ্বিগুণ।



উভয় ঘটনা বিশ্লেষণ করে আমরা কী পেলাম?

উভয় ক্ষেত্রেই প্রতিটি পদ তার পূর্ববর্তী পদের দ্বিগুণ। অন্যভাবে যে কোনো পদ ও তার পূববর্তী পদের অনুপাত নির্দিষ্ট একটি সংখ্যা। অর্থাৎ যে কোনো পদ ও তার পূববর্তী পদের অনুপাত সাধারণ। আর এই ধরনের অনুক্রমই হলো **গুণোন্তর অনুক্রম** (Geometric Sequence).

উদাহরণ: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$ একটি গুণোত্তর অনুক্রম, কারণ এখানে যে কোনো পদ ও তার পূর্ববর্তী পদের অনুপাত $\frac{1}{2}$ ।

একক কাজ

দুইটি গুণোত্তর অনুক্রম নিচের বক্সে লেখো যেখানে একটির সাধারণ অনুপাত $\frac{1}{3}$ এবং অন্যটির সাধারণ অনুপাত তোমার নিজের মতো পছন্দ করো।

গুণোত্তর অনুক্রমের প্রথম পদটিকে a এবং সাধারণ অনুপাতকে r দ্বারা প্রকাশ করা হয়। তাহলে, একটি গুণোত্তর অনুক্রমের বীজগণিতীয় রূপটি আমরা নিচের মতো লিখতে পারি:

গুণোত্তর অনুক্রমের বীজগণিতীয় রূপ

$$a$$
, ar , ar^2 , ar^3 , ...

অনুক্রমটির প্রথম পদ a এবং সাধারণ অনুপাত r কারণ-

২য় পদ
$$\div$$
 ১ম পদ $= ar \div a = r$

৩য় পদ
$$\div$$
 ২য় পদ $=ar^2 \div ar = r$

8র্থ পদ
$$\div$$
 ৩য় পদ $=ar^3 \div ar^2 = r$

তোমরা কি বলতে পারবে অনুক্রমটির nতম পদ কত? পর্যবেক্ষণ করে দেখো, nতম পদ

$$a_n = ar^{n-1}$$

একক কাজ

- দুইটি সসীম ও দুইটি অসীম গুণোত্তর অনুক্রমের উদাহরণ দাও।
- a, b, c গুণোত্তর অনুক্রমভুক্ত হলে, নিচের ফাঁকা ঘরগুলো পরণ করো:

গুণোত্তর অনুক্রমের সাধারণ পদ বা nতম পদ নির্ণয়

নিচের অনুক্রমগুলোর সাধারণ অনুপাত ও পরের তিনটি পদ নির্ণয় করো। তোমাদের জন্য একটি নির্ণয় করে দেওয়া হলো:

অনুক্রম	সাধারণ অনুপাত	পরের তিনটি পদসহ অনুক্রমটি
i) 6, 18, 54,	$18 \div 6 = 54 \div 18 = 3$	6, 18, 54, <u>162</u> , <u>486</u> , <u>1458</u> ,
ii) $3x$, $9x^2$, $81x^3$,		$3x, 9x^2, 81x^3, _, _, _,$
iii) 625, 25, 5,		625, 25, 5,,,,

তোমরা তো পরবর্তী তিনটি পদ খুব সহজেই বের করতে পারলে, তাই না? কিন্তু তোমাকে যদি 50তম বা 100তম পদ নির্ণয় করতে বলে, তুমি কি এভাবেই একটি একটি করে নির্ণয় করবে? ভেবে দেখো তো, কাজটি সহজ হবে কি না?

জোড়ায় কাজ

সমান্তর অনুক্রমের মতো এক্ষেত্রেও একটি উদাহরণ নিয়ে প্রতিটি পদ বিশ্লেষণ করো। অনুসন্ধান করে দেখো পদগুলোর মধ্যে কোনো সাধারণ বৈশিষ্ট্য পাওয়া যায় কি না।

লিলির সপ্তাহিক সঞ্চয়ের অনুক্রম

লিলির প্রতি সপ্তাহে সঞ্চয়ের অনুক্রমটি বিবেচনা করো। অনুক্রমটি নিম্নরূপ

তাহলে, লিলি এক বছরে বা 52 সপ্তাহে তাকে কত টাকা সঞ্চয় করবে?

পদ	দেওয়া আছে	প্যাটার্ন	আমরা লিখতে পারি	সাধারণ পদ বা <i>n</i> -তম পদ
1	5	5	€\× 2°\	(a)=(5)×(2)n-1
2	10	5 × 2	$ 5 \times 2^{1} $	
3	20	$5 \times 2 \times 2$	$ 5 \times 2^2 $	n-তম ১ম পদ সাধারণ
4	40	$5 \times 2 \times 2 \times 2$	5×2^3	$ig \qquad \qquad$
•••	•••			<u> </u>
n	a_{n}	$ \begin{array}{c c} 5 \times 2 \times 2 \times 2 \times \\ \dots \times 2 \end{array} $	$5 \times 2^{n-1}$	n তম পদ $a_n=a_1r^{n-1}$

এবার ভেবে দেখো তো, লিলির যদি গুণোত্তর অনুক্রমের সাধারণ পদ বা nতম পদ নির্ণয়ের এই সহজ ধারণাটি জানা থাকত, তাহলে 52তম সপ্তাহে সে কত টাকা সঞ্চয় করেছে তা বের করা কি কঠিন বা অনেক বেশি সময় লাগতো?

হিসাবটি ঝটপট করে সিদ্ধান্ত গ্রহণ করো:

উদাহরণ

ধরো, তুমি একটি কাজ পেলে, যা পড়াশোনার পাশাপাশি করা সম্ভব। কাজটি করে তুমি প্রথম মাসে আয় করেছ 4000 টাকা। পরবর্তী প্রতিমাসে পূর্ববর্তী মাসের 5% করে আয় বৃদ্ধি পাবে। 10তম মাসে তোমার আয় কত টাকা হবে?

সমাধান: চলো সমস্যাটি একটি তালিকা করে বিশ্লেষণ করি:

মাস	প্রথম	দ্বিতীয়	তৃতীয়	•••	10তম
আয় (টাকা)	4000	4200	4410	•••	?

প্রথমেই আমাদের খুঁজে দেখতে হবে, প্রাপ্ত অনুক্রমটি সমান্তর নাকি গুণোত্তর। অনুসন্ধানটি তুমি নিজেই করো:

অনুক্রমটির ১ম পদ $a_1=4000$, সাধারণ অনুপাত r=1.05 এবং পদসংখ্যা n=10 তুমি ইতোমধ্যেই জেনেছ, গুণোত্তর ধারার সাধারণ পদ বা nতম পদ নির্ণয়ের সূ $\underline{a}=a_1\,r^{n-1}$

 \therefore ১০তম মাসে তোমার আয় হবে = $4000~(1.05)^{10-1}$ = $4000~(1.05)^9$ = 6205.31 টাকা প্রোয়)।

মাথা খাটাও

x + 6, x + 12, x + 15 একটি গুণোত্তর অনুক্রম হলে, x এর মান নির্ণয় করো।

নির্দেশনা

a, b, c গুণোত্তর অনুক্রমভুক্ত হলে, $\frac{b}{a} = \frac{c}{b}$ বা $b^2 = ac$ হবে, যা তুমি ইতোমধ্যেই জেনেছ।

একক কাজ

- ক) নিচের গুণোত্তর অনুক্রমের সাধারণ পদ নির্ণয় করো।
 - i) $3, 15, 75, \dots$ ii) $4, \frac{4}{5}, \frac{4}{25}, \dots$ iii) যার 7তম পদ 8 এবং 13তম পদ 512
- খ) নিচের গুণোত্তর অনুক্রমের ফাঁকা পদগুলো নির্ণয় করো।
 - i) $3, _{---}, _{---}, _{1}$ ii) $_{---}, _{1} ^{1}, _{64}$
- গ) i) 4, 12, 36,... অনুক্রমের কততম পদ 2916?
 - ii) একটি গুণোত্তর অনুক্রমের $a_4 = \frac{8}{9}$ এবং $a_7 = \frac{64}{243}$ হলে, a_{10} = কত?

ফিবোনাচ্চি ক্রম (Fibonacci Sequence)

ফিবোনাচ্চি অনুক্রম সমান্তর ও গুণোত্তর অনুক্রম থেকে ভিন্নতর। নিচের অনুক্রমগুলো লক্ষ করো। প্রতিটির ক্ষেত্রেই তুমি কি তার পরের পদটি নির্ণয় করতে পারবে? যেগুলো পারবে যুক্তিসহ নিচের ছকে লেখো:

অনুক্রম	পরবর্তী পদ	যুক্তি
(i) 3, 5, 7, 9, 11,		
(ii) 3, 6, 12, 24, 48,		
(iii) 3, 5, 8, 13, 21,		

(i) ও (ii) নং অনুক্রমের পরের পদটি খুব সহজেই নির্ণয় করতে পেরেছ, তাই না? কারণ এদের পাশাপাশি দুইটি পদের বৈশিষ্ট্য সম্পর্কে তোমার ধারণা আছে। কিন্তু (iii) নং অনুক্রমটির পরবর্তী পদ কোনোভাবেই বের করা যাচ্ছে না। আর অনুক্রমটির পদগুলোতে একই বৈশিষ্ট্যের পুনরাবৃত্তিও ঘটছে না। যেহেতু (iii) নং সমস্যাটিকে অনুক্রম বলা হয়েছে, সেহেতু নিশ্চয়ই এর পদগুলোর মধ্যে কোনো না কোনো একই বৈশিষ্ট্যের পুনরাবৃত্তি থাকবেই। এটি একটি বিশেষ ধরনের অনুক্রম।

এই বিশেষ ধরনের অনুক্রমের পদগুলোর মধ্যকার সম্পর্কের সৌন্দর্য আবিষ্কার করেছিলেন একজন বিখ্যাত গণিতবিদ Leonardo Pisano, যার ডাকনাম ফিবোনাচ্চি (Fibonacci)। প্রকৃতির মাঝে অনুসন্ধান করে তিনি সংখ্যারাশির এই বিশেষ ধরনের অনুক্রম খুজে পান, যা তিনি "Liber Abaci" নামক গ্রন্থে প্রকাশ করেন। ফিবোনাচ্চি অনুক্রমে প্রথম সংখ্যা দুইটি যথাক্রমে 0 এবং 1 এবং এর পরবর্তী যে কোনো পদ পূর্ববর্তী দুটি পদের সমষ্টির সমান। অর্থাৎ তৃতীয় পদ 0 + 1 = 1, চতুর্থ পদ 0 + 1 = 1

Leonardo Pisano (Fibonacci)

ফিবোনাচ্চি অনুক্রমের পদগুলোকে আমরা নিয়োক্ত সূত্র থেকে বের করতে পারি,

$$F_{n+2} = F_{n+1} + F_n$$
; $n \in N$

যেখানে,
$$F_0 = 0$$
, $F_1 = F_2 = 1$

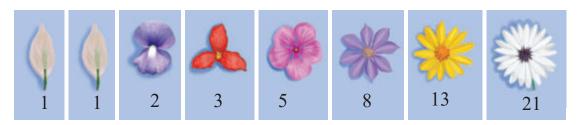
ফিবোনাচ্চি অনুক্রম তৈরির খেলা

সময়: 5 মিনিট

নির্ধারিত সময়ের মধ্যে সঠিক ফিবোনাচ্চি অনুক্রম তৈরি করতে হবে। ক্লাশের মধ্যে যে বেশি সংখ্যক ফিবোনাচ্চি অনুক্রমের পদ সঠিকভাবে গঠন করতে পারবে, সে জয়লাভ করবে।

প্রকৃতিতে ফিবোনাচ্চি ক্রম

ফিবোনাচ্চি একজন প্রকৃতিপ্রেমী গণিতবিদ ছিলেন। প্রকৃতির বিভিন্ন সৃষ্টি রহস্য নিয়ে তিনি গবেষণা করতেন। তিনি গবেষণা করতে গিয়ে দেখলেন যে, প্রকৃতিতে কিছু জিনিস আছে যা একটি নিয়মিত সজ্জা অনুসরণ করেছে। নিচের ছবিগলো পর্যবেক্ষণ করো।



লক্ষ করো যে, প্রতিটি ফুলের পাপড়ির সংখ্যা ফিবোনাচ্চি অনুক্রম মেনে চলে।

একক/দলগত কাজ

তোমাদের স্কুলের বাগান বা বাড়ির আশপাশের ঐসকল উদ্ভিদ পর্যবেক্ষণ করে একটি রিপোর্ট তৈরি করো যাদের শাখা-প্রশাখা, পাতার সংখ্যা বা ফুলের পাপড়ির সংখ্যা ফিবোনাচ্চি অনুক্রমের অনুরূপ।

ফিবোনাচ্চি আয়তক্ষেত্র

পাশের ছবিটি লক্ষ করো। এটি একটি আয়তক্ষেত্র।
এর ক্ষুদ্রতম বর্গপুলোর বাহর দৈর্ঘ্য 1 একক হলে,
আয়তটির ক্ষেত্রফল ছবির ছোটো ছোটো বর্গপুলো
গণনা করেই নির্ণয় করা সম্ভব। তাই না? তাহলে
ঝটপট বলে ফেলো আয়তটির ক্ষেত্রফল =

আয়তটির ক্ষেত্রফল ভিন্নভাবেও নির্ণয় করা সম্ভব। ছবিতে আয়তটির দৈর্ঘ্য = 13 একক এবং প্রস্থ = 8 একক।



সুতরাং ক্ষেত্রফল $= (13 \times 8) = 104$ বর্গ একক।

এত গেল, আয়তক্ষেত্রটির জ্যামিতিক হিসাবনিকাশ। কিন্তু তোমরা যদি গভীরভাবে লক্ষ করো, আয়তটির ভিতরে কয়েকটি সংখ্যা দেখতে পাবে। সংখ্যাগুলো ছোটো থেকে ক্রমানুসারে সাজালে একটি অনুক্রম তৈরি হবে। অনুক্রমটি নিশ্চয়ই চিনতে পারছ, তাই না? এখন আমরা যদি প্রতি ক্ষেত্রে ফিবোনাচ্চি ক্রমের পদ অনুসারে একটির পিঠে একটি করে বর্গ আঁকি এবং এভাবে আঁকতে আঁকতে যেখানেই থামি না কেনো সব সময় দেখব একটি আয়তক্ষেত্র তৈরি হবে। যাকে আমরা ফিবোনাচ্চি আয়তক্ষেত্র বলতে পারি। আবার আয়তক্ষেত্রটির ভিতরে বিভিন্ন আকৃতির যে বর্গগুলো তৈরি হবে, তাদের ক্ষেত্রফলের সমষ্টিই হবে আয়তটির ক্ষেত্রফল। চলো যাচাই করে দেখি:

 \therefore আয়তটির ক্ষেত্রফল = $1^2+1^2+2^2+3^2+5^2+8^2=104=(13\times 8)$ বর্গ একক।

একক কাজ

ছক কাগজে অথবা গ্রিডে 1, 1, 2, 3, 5, 8, 13, 21 সংখ্যাগুলো ব্যবহার করে ফিবোনাচ্চি আয়তক্ষেত্র অঞ্জন করো।

ধারা (Series)

তোমরা ইতোমধ্যেই অনুক্রম সম্পর্কে জেনেছ। আর অনুক্রমের পদগুলো পরপর যোগ আকারে লিখলে **ধারা** (Series) পাওয়া যায়। যেমন:

উদাহরণ-১: ধ্রুব সংখ্যার ধারা: 3 + 3 + 3 + 3+...

উদাহরণ-১. স্বাভাবিক সংখ্যার ধারা: $1+2+3+4+\cdots$

ধারার সাধারণ আকার

কোনো অনুক্রমের প্রথম পদ a_1 , দ্বিতীয় পদ a_2 , তৃতীয় পদ a_3 , ... , এবং n-তম পদ a_n হলে, অনুক্রমিট লিখতে পারি, a_1 , a_2 , a_3 ,..., a_n ,... এই অনুক্রমের পদগুলো যোগ আকারে লিখলে, অর্থাৎ

$$a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

আকারে লিখলে অনুক্রমটি ধারায় রূপান্তরিত হয়ে গেল। একে ধারার **সাধারণ আকার (general form of series)** বলে।

সসীম ও অসীম ধারা

ধারার পদ সংখ্যা নির্দিষ্ট হলে তাকে সসীম ধারা (Finite Series) এবং পদ সংখ্যা অনির্দিষ্ট বা অসীম হলে, তাকে অসীম ধারা (Infinite Series) বলা হয়। যেমন:

$$1+3+5+7+\cdots+61$$
 একটি সসীম ধারা

এবং

$$1+3+5+7+\cdots$$
 একটি অসীম ধারা।

একক কাজ

দুইটি সসীম ও দুইটি অসীম ধারার উদাহরণ দাও।

দুইটি গুরুত্বপূর্ণ ধারা

অনুক্রমের মতো ধারার ক্ষেত্রেও পরপর দুইটি পদের মধ্যে সম্পর্কের উপর নির্ভর করে দুই ধরনের ধারা পাওয়া যায়। যেমন:

(i)
$$1+3+5+7+\cdots$$

এবং

(ii)
$$2+4+8+16+\cdots$$

দুইটি ধারা। প্রথমটির পরপর দুইটি পদের পার্থক্য সমান। আবার দ্বিতীয়টির পরপর দুইটি পদের অনুপাত সমান। তাই অনুক্রমের মতো ধারাগুলোর মধ্যে গুরুত্পূর্ণ দুইটি ধারা হলো সমান্তর ধারা ও গুণোত্তর ধারা।

সমান্তর ধারা (Arithmetic Series)

যে ধারার পদগুলো সমান্তর অনুক্রম মেনে চলে, তাকে সমান্তর ধারা (Arithmatic Series) বলে। তোমরা জেনেছ, সমান্তর অনুক্রমের পরপর দুইটি পদের পার্থক্য সমান। সমান্তর ধারার ক্ষেত্রেও ঠিক তাই। কোনো সমান্তর ধারার প্রথম পদ a এবং সাধারণ অন্তর d হলে, ধারাটি হবে-

$$a + (a + d) + (a + 2d) + (a + 3d) + \dots + \{a_1 + (n - 1)d\} + \dots$$

যেখানে ধারাটির *n*-তম পদ

$$a_n = a_1 + (n-1)d$$
 [$a = a_1$ বিবেচনাকরে]

একক কাজ

ক) নিচের সমান্তর ধারার সাধারণ পদ বা *n*-তম পদ নির্ণয় করো।

i)
$$6 + 13 + 20 + \cdots$$
 ii) $2 - 5 - 12 - \ldots$

খ) নিচের সমান্তর ধারার ফাঁকা পদগুলো নির্ণয় করো।

মাথা খাটাও

k এর কোন মানের জন্য (5k-3)+(k+2)+(3k-11) একটি সমান্তর ধারা হবে? ধারাটির সাধারণ অন্তর ও সাধারণ পদ নির্ণয় করো।

সমান্তর ধারার সমষ্টি

তুমিতো জানো, ভৌগোলিক অবস্থানের কারণে বাংলাদেশ প্রায় সময়ই ঘূর্ণিঝড় আক্রান্ত হয়ে থাকে। আর ঘর্ণিঝড় হলে. সবচেয়ে বেশি ক্ষতিগ্রস্থ হয় আমাদের গাছপালা। বাড়িঘর, রাস্তঘাট, বনভূমির শত শত গাছপালা উপড়ে যায়। তুমি এও জানো যে, এই সবুজ গাছপালা আমাদের কতই-না উপকার করে থাকে। তাই আমাদের রক্ষার্থে আমাদের সবাইকে বৃক্ষ রোপণ করতে হবে। এক্ষেত্রে তোমরা শ্ৰেণি শিক্ষকের তোমাদের

মাধ্যমে প্রতিষ্ঠান প্রধানের সঞ্চো কথা বলে তোমাদের এলাকায় বৃক্ষ রোপণের জন্য পাঁচ বছর মেয়াদি একটি পরিকল্পনা গ্রহণ করতে পার। পরিকল্পনাটি এমন হতে পারে, প্রথম মাসে তোমরা 10টি ফলজ গাছের চারা রোপণ করলে। এরপর পরবর্তী প্রতি মাসে আগের মাসের চেয়ে 5টি করে বেশি রোপণ করবে। একবার কল্পনা করে দেখো তো পাঁচ বছরে তোমরা কতগুলো গাছ রোপণ করতে পারবে?

চলো, প্রথম বছরের (12 মাসের) হিসাবটি করে দেখি। নিচের ছকে কয়েকটি উপাত্ত দেয়া আছে, বাকিগুলো তোমরা পুরণ করো।

মাসের সংখ্যা	1	2	3	4	5	6	7	8	9	10	11	12	মোট
গাছের সংখ্যা	10	15	20									65	??

তোমরা হয়তো বুঝতে পারছ, হিসেবটিকে ধারায় রূপান্তর করলে এটি একটি সমান্তর ধারা হবে। সমান্তর ধারাটি নিয়রপ:

$$10 + 15 + 20 + \cdots + 65$$

ভেবে দেখো, যে কোনো মাসের প্রয়োজনীয় চারার সংখ্যা হয়তো ধারাটির সাধারণ পদ নির্ণয়ের সূত্র ব্যবহার করে বের করা যাবে। কিন্তু এক বছরে মোট কতপুলো গাছ তোমরা নিজের হাতে রোপণ করতে পারবে, তা বের করা কি সহজ হবে? এসো আমরা কীভাবে মোট সংখ্যাটি নির্ণয় করতে পারি, সে বিষয়ে আলোচনা করি।

নির্দেশনা

সমান্তর ধারার সাধারণ পদ বা nতম পদ

$$a_n = a + (n-1)d$$

সর্বপ্রথম ধারার সমষ্টি নির্ণয়ের ভিত্তি রচনা করেন অন্যতম শ্রেষ্ঠ একজন গণিতবিদ কার্ল ফ্রেডরিখ গাউস (Carl Friedrich Gauss). আমরা এখানে ধারার সমষ্টি নির্ণয়ের জন্য কার্ল গাউসের পদ্ধতি আলোচনা করব।

প্রথম nসংখ্যক স্বাভাবিক সংখ্যার সমষ্টি কার্ল গাউস কীভাবে বের করেছেন তা পর্যবেক্ষণ করি।

Carl Friedrich Gauss

ধরি, প্রথম nসংখ্যক স্বাভাবিক সংখ্যার ধারা

$$S_n = 1 + 2 + 3 + \dots + n$$

ধারাটি বিপরীতক্রমে লিখতে পারি, $S_n = n + (n-1) + (n-2) + \cdots + 1$

ধারা দুইটি যোগ করে পাই,
$$2S_n = \frac{(n+1)+(n+1)+(n+1)+\cdots+(n+1)}{n$$
 সংখ্যক
$$\therefore S_n = \frac{n \ (n+1)}{2}$$

এটি প্রথম nসংখ্যক স্বাভাবিক সংখ্যার সমষ্টির গাউসের সূত্র।

একক কাজ

গাউসের সূত্র ব্যবহার করে প্রথম 50টি স্বাভাবিক সংখ্যার সমষ্টি নির্ণয় করো।

এবার চলো আমরা চারা রোপণের সমস্যাটিতে ফিরে যাই। এক বছরে রোপণ করা চারার সংখ্যার সমষ্টির ধারাটি ছিল,

$$S = 10 + 15 + 20 + \dots + 65$$

ধারাটি বিপরীতক্রমে লিখলে পাই,
$$S=65+60+55+\cdots+10$$
 ধারা দুইটি যোগ করে পাই,
$$2S=\frac{75+75+75+\cdots+75}{12\ \text{সংখ্যক}}=12\times75$$

$$\therefore S = \frac{12 \times 75}{2} = 6 \times 75 = 450$$

অর্থাৎ এক বছরে 450টি গাছের চারা রোপণ করতে পারবে।

সমান্তর ধারার সমষ্টি নির্ণয়ের সূত্র

ধরি, কোনো একটি সমান্তর ধারার প্রথম পদ a এবং সাধারণ অন্তর d. তাহলে n-তম পদ $a_n=a+(n-1)d$ ধরি, প্রথম n-সংখ্যক পদের সমষ্টি \mathbf{S}_n . তাহলে

$$S_n = a + (a + d) + (a + 2d) + \dots + (a + (n - 1)d)$$

ধারাটিকে বিপরীতক্রমে লিখলে পাই,

$$S_n = (a + (n-1)d) + (a + (n-2)d) + (a + (n-3)d) + \dots + a$$

ধারা দুইটিকে যোগ করে পাই,

$$2S_n = \frac{\{2a + (n-1)d\} + \{2a + (n-1)d\} + \dots + \{2a + (n-1)d\}}{n$$
 সংখ্যক

=
$$n\{2a + (n-1)d\}$$

 $\therefore S_n = \frac{1}{2}n\{2a + (n-1)d\}$

এটিই সমান্তর ধারার n-সংখ্যক পদের সমষ্টির সূত্র।

এবার পাঁচ বছরে তোমরা মোট কতগুলো গাছ রোপণ করতে পারবে সেই হিসাবটি নিচের খালি বক্সে করো:

শক্ষাবর্ষ ২০২৪

জোড়ায় কাজ

- ১. ধরো, তুমি একটি চাকুরি পেয়েছ। তুমি তোমার বেতন থেকে প্রথম মাসে 1200 টাকা সঞ্চয় করলে এবং পরবর্তী প্রতিমাসে এর পূর্ববর্তী মাসের তুলনায় 100 টাকা বেশি সঞ্চয় করতে থাকবে।
 - ক) তুমি 20তম মাসে কত টাকা সঞ্চয় করবে?
 - খ) প্রথম 20 মাসে মোট কত টাকা সঞ্চয় করবে?
 - গ) কত বছরে তুমি মোট 106200 টাকা সঞ্চয় করতে পারবে?
- ২. একটি সমান্তর ধারার $a_{_8}=60$ এবং $a_{_{12}}=48$ হলে, $a_{_{40}}$ এবং $\mathbf{S}_{_{40}}$ নির্ণয় করো।
- ৩. কোনো সমান্তর ধারার ১ম ও শেষ পদ যথাক্রমে 3 এবং –53। যদি ধারাটির সমষ্টি –375 হয় তবে, ধারাটিতে কয়টি পদ ছিল?

গুণোত্তর ধারা

তোমাদের নিশ্চয় মনে আছে যে লিলি টাকা সঞ্চয় করে তার মায়ের জন্য একটি উপহার কিনেছিল। লিলির

মতো অপুও প্রতি সপ্তাহে টাকা সঞ্চয় করে। তার একটি মাটির ব্যাংক আছে যেখানে সে প্রথম সপ্তাহে 2 টাকা রাখে, দ্বিতীয় সপ্তাহে 4 টাকা, তৃতীয় সপ্তাহে 8 টাকা এবং এভাবে প্রতি সপ্তাহে পূর্বের সপ্তাহের দ্বিগুণ টাকা ওই মাটির ব্যাংকে রাখে। তিন মাস পর অপু ব্যাংকটি হাতে নিয়ে খুবই খুশি হয়। কারণ এর ওজন আগের চেয়ে বেড়ে গেছে এবং কানের কাছে নিয়ে ঝাঁকুনি দেওয়ায় ভিতরে টাকা পয়সা নড়াচড়ার বেশ শব্দ পাওয়া যাছে। অপুর ইচ্ছে হলো একটু হিসাব-নিকাশ করে দেখে, ভিতরে কত টাকা থাকতে পারে। তাই সে ঝটপট কাগজ কলম নিয়ে বসে গেল।

অপু লিলির মতো প্রথমে নিচের একটি তালিকা তৈরি করে:

তিন মাস হলো এক বছরের
$$\frac{1}{4}$$
 অংশ। সুতরাং 3 মাস $=\left(52 \times \frac{1}{4}\right)=13$ সপ্তাহ।

13 সপ্তাহের সারণিটি নিচে দেয়া হলো। খালি ঘরগুলো পূরণ করো।

সপ্তাহের সংখ্যা	1	2	3	4	 11	12	13	মোট
টাকার পরিমাণ	2	4	8				8192	??

গুণোত্তর অনুক্রম ও এর বৈশিষ্ট্য সম্পর্কে অপু ইতোমধ্যেই জেনে গেছে। তাই সে প্রতি সপ্তাহের জমানো টাকাকে একেকটি পদ বিবেচনা করে প্রথমে একটি ধারা তৈরি করে। ধারাটি হলো:

$$2 + 4 + 8 + 16 + ... + 8192$$

ধারাটির প্রথম পদ a=2, সাধারণ অনুপাত $r=\frac{4}{2}=2$.

অপু ধারাটিকে নিচের মতো করে বিশ্লেষণ করে:

পদ (সপ্তাহ)	টাকার পরিমাণ	প্যাটার্ন	বীজগণি	ণিতীয় রূপ
1	2	$2 \times 1 = 2 \times 2^0 = 2 \times 2^{1-1}$	ar ¹⁻¹	а
2	4	$2 \times 2 = 2 \times 2^{1} = 2 \times 2^{2-1}$	ar^{2-1}	ar
3	8	$2 \times 2 \times 2 = 2 \times 2^2 = 2 \times 2^{3-1}$	ar^{3-1}	ar ²
4	16	$2 \times 2 \times 2 \times 2 = 2 \times 2^3 = 2 \times 2^{4-1}$	ar ⁴⁻¹	ar³
				•••
n		$\underbrace{\frac{2 \times 2 \times 2 \times 2 \times \dots \times 2}{n \; \text{সংখ্যক}}} = 2 \times 2^{n-1}$	ar^{n-1}	ar^{n-1}

তাহলে, সসীম গুণোত্তর ধারাটি হবে, $a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

একক কাজ

ক) গুণোত্তর ধারা নির্ণয় করো: i) a=4, r=10 ii) $a=9, r=\frac{1}{3}$ iii) $a=\frac{1}{\sqrt{2}}, r=-\sqrt{2}$

খ) অপু ১২তম সপ্তাহে কত টাকা ব্যাংকে রেখেছিল?

গুণোত্তর ধারার প্রথম n সংখ্যক পদের সমষ্টি নির্ণয়

মাটির ব্যাংকটিতে তিন মাসে মোট কত টাকা জমা হয়েছে ব্যাংকটি না ভেঙে অপু তা জানার পরিকল্পনা করে। তার মাথায় দুটি ভাবনা উঁকি দেয়। প্রথমটি হলো– তিন মাসে অর্থাৎ মোট 13 সপ্তাহে যত টাকা জমা হয়েছে তা প্রতি সপ্তাহের টাকা হিসাব করে নির্ণয় করে যোগ করা। কিন্তু এটি অনেক সময় সাপেক্ষ্য ব্যাপার। আর দিতীয়টি হলো– এমন কোনো ব্যবস্থা অনুসন্ধান করা যার মাধ্যমে সরাসরি মোট টাকা জানা যাবে। অপুর অনুসন্ধানী মন দ্বিতীয়টিতেই স্থির হয়।

গুণোত্তর ধারাটির ১ম পদ a, সাধারণ অনুপাত r [যেখানে $r \neq 1$] এবং প্রথম ${\bf n}$ সংখ্যক পদের সমষ্টি ${\bf S}_n$ হলে, আমরা লিখতে পারি,

$$s_n = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$$
(1)

উভয় পক্ষকে \mathbf{r} দ্বারা গুণ করে, $rs_n = ar + ar^2 + ar^3 + ... + ar^{n-1} + ar^n$ (2)

এখন (1) নং থেকে (2) বিয়োগ করে পাই,

$$S_n - rS_n = a - ar^n$$

$$All, S_n (1 - r) = a(1 - r^n)$$

$$\therefore S_n = \frac{a(1 - r^n)}{1 - r}$$

এটিই গুণোত্তর ধারার সমষ্টির সূত্র।

তোমাদের মনে আছেতো, অপু 13 সপ্তাহে টাকা সঞ্চয় করে কোন ধারাটি পেয়েছিল? হ্যাঁ, ধারাটি ছিল:

$$2 + 4 + 8 + 16 + ... + 8192$$

ধারাটির ১ম পদ a=2, সাধারণ অনুপাত r=2 এবং পদ সংখ্যা n=13। সূত্রটিতে মানগুলো বসিয়ে অপুর তিন মাসের সঞ্চিত মোট টাকার পরিমাণ বের করো।

একক কাজ

ক) $1 - 3 + 9 - 27 + \cdots$ প্রথম 7 টি পদের সমষ্টি নির্ণয় করো।

খ) $54+18+6+\cdots+rac{2}{81}$ ধারাটির সমষ্টি নির্ণয় করো।

অসীম গুণোত্তর ধারার সমষ্টি

কোনো গুণোত্তর ধারার প্রথম পদ a, সাধারণ অনুপাত $r \neq 1$ হলে, ধারাটির প্রথম ${f n}$ সংখ্যক পদের সমষ্টি

$$s_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$
$$= \frac{a(1 - r^n)}{1 - r}$$

কিন্তু ধারাটির পদ সংখ্যা অসীম হলে এর সমষ্টি নির্ণয়ের ক্ষেত্রে আমাদের আলাদাভাবে কিছু ভাবতে হবে কিনা অনুসন্ধান করে দেখি। বলো তো ধারাটি কখন অসীম হবে? n এর মান অসীম হলে ধারাটিও অসীম হবে। এই অবস্থায় আমরা লিখতে পারি.

$$s_n = a + ar + ar^2 + ar^3 + ... + ar^{n-1} + ...$$

এখন বলো তো, এই ধারাটির সমষ্টি কত হবে? ধারাটির সমষ্টি r এর মানের উপর নির্ভর করে।

চিন্তা করে দেখো.

ক) যখন
$$|\mathbf{r}| < 1$$
 অর্থাৎ $-1 < r < 1$

তখন, n এর মান বৃদ্ধি পেয়ে অসীম হলে, অর্থাৎ $n o \infty$ হলে $|r^n|$ এর মান ক্রমশঃ হ্রাস পেয়ে 0 এর কাছাকাছি হবে। তখন ধারাটির সমষ্টি

$$S_n = \frac{a(1 - r^n)}{1 - r}$$

কে আমরা লিখতে পারি.

$$S_{\infty} = \frac{a}{1 - r}$$

খ) যখন $|\mathbf{r}| > 1$ অর্থাৎ r > 1 অথবা r < -1

তখন n এর মান বৃদ্ধি পাওয়ার সাথে সাথে $|r^n|$ এর মানও ক্রমশঃ বিদ্ধি পেতে থাকবে এবং তখন কোনো নির্দিষ্ট মান পাওয়া যাবে না। এক্ষেত্রে ধারাটির কোনো সমষ্টি নির্ণয় করা সম্ভব নয়।

$$-1 < r < 1$$

$$r = \frac{1}{2} \text{ FeT, } r^n = ??$$

$$r^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4},$$

$$r^3 = \left(\frac{1}{2}\right)^3 = \frac{1}{8},$$

$$r^4 = \left(\frac{1}{2}\right)^4 = \frac{1}{16}, \dots$$

সুতরাং দেখা যাচ্ছে যে, n এর মান যতই বাড়ছে, pⁿ এর ততই কমছে।

জোডায় কাজ

প্রত্যেক ক্ষেত্রে অসীম গুণোত্তর ধারা তৈরি করো।

i)
$$a = 4$$
, $r = \frac{1}{2}$

i)
$$a = 4$$
, $r = \frac{1}{2}$ ii) $a = 2$, $r = -\frac{1}{3}$

iii)
$$a = \frac{1}{3}$$
, $r = 3$

iii)
$$a = \frac{1}{3}$$
, $r = 3$ iv) $a = 1$, $r = -\frac{2}{7}$

সমস্যা

ধরো, তুমি তোমার বাড়ির পাশে অথবা বাগানে একটি চারা গাছ রোপণ করলে। এক বছর পর চারা গাছটির উচ্চতা 1 মিটার হলো। পরবর্তী বছর এর উচ্চতা 0.8 মিটার বৃদ্ধি পেল। প্রতি বছর গাছটির উচ্চতা পূর্বের বছরের বৃদ্ধিপ্রাপ্ত উচ্চতার 80% বাড়ে। এভাবে বাড়তে থাকলে গাছটির উচ্চতা সর্বোচ্চ কত মিটার হতে পারবে?

সমাধান

প্রথম বছর গাছটির উচ্চতা ছিল = 1 মিটার।

দ্বিতীয় বছর গাছটির উচ্চতা বৃদ্ধি পেল =0.8 মিটার।

তৃতীয় বছর গাছটির উচ্চতা বৃদ্ধি পেল = (0.8 imes 80%) = 0.64 মিটার।

চতুর্থ বছর গাছটির উচ্চতা বৃদ্ধি পেল = (0.64 imes 80%) = 0.512 মিটার।

এভাবেই গাছটির উচ্চতা প্রতি বছর বাড়তে থাকল। চলো, প্রতি বছর গাছটির বৃদ্ধিতে কোনো ধারা খুঁজে পাই কিনা।

গাছটির বৃদ্ধির ধারাটি হবে $= 1 + 0.8 + 0.64 + 0.512 + \cdots$

এখানে, ধারাটির প্রথম পদ a=1 এবং সাধারণ অনুপাত $r=\dfrac{0.8}{1}=\dfrac{0.64}{0.8}=0.8$

যেহেতু, ধারাটি একটি অসীম গুণোত্তর ধারা এবং $-1 <_{
m r} < 1$

সূতরাং ধারাটির সমষ্টি

$$s_{\infty} = \frac{a}{1 - r} = \frac{1}{1 - 0.8} = \frac{1}{0.2} = 5$$
মিটার।

তাহলে, গাছটির সর্বোচ্চ উচ্চতা হবে 5 মিটার।

অনুশীলনী

১. নিচের অনুক্রমগুলো সমান্তর, গুণোত্তর, ফিবোনাচ্চি নাকি কোনোটিই নয়? কেন? সাধারণ পদ নির্ণয়সহ ব্যাখ্যা করো।

(i) 2, 5, 10, 17,.....

(ii) -2, 7, 12, 17,..... (iii) -12, 24, -48, 96,.....

(iv) 13, 21, 34, 55,..... (v) 5, -3, $\frac{9}{5}$, $-\frac{27}{25}$,..... (vi) $\frac{1}{3}$, $\frac{2}{3}$, $\frac{4}{3}$, $\frac{8}{3}$,.....

২. নিচের অনুক্রমগুলোর শুন্যস্থান পুরণ করো।

(i) 2, 9, 16, ____, 37, ___. (ii) -35, ____, ___, -5, 5, ____.

(iii) _____, ____, 5, -4, ____. (iv) _____, $10x^2$, $50x^3$, _____,

৩. ছকের খালি ঘরগুলো পরণ করো।

ক্রমিক নং	১ম পদ a	সাধারণ অন্তর <i>d</i>	পদসংখ্যা n	nতম পদ	S_n
i.	2	5	10		
ii.	-37	4			-180
iii.	29	-4		-23	
iv.		-2	13	10	
v.	3 4	1/2		$\frac{31}{4}$	
vi.	9	-2			-144
vii.	7		13	35	
viii.		7	25		2000
ix.		$-\frac{3}{4}$	15		165 4
X.	2	2			2550

- ৪. তোমার পড়ার ঘরের মেঝেতে তুমি সমবাহু ত্রিভুজাকৃতির একটি মোজাইক করতে চাও, যার বাহুর দৈর্ঘ্য 12 ফুট। মোজাইকে সাদা ও নীল রঙের টাইলস থাকবে। প্রতিটি টাইলস 12 ইঞ্চি দৈর্ঘ্যবিশিষ্ট সুষম ত্রিভুজাকৃতি। টাইলসগুলো বিপরীত রঙে বসিয়ে মোজাইকটি সম্পূর্ণ করতে হবে।
 - ক) ত্রিভূজাকৃতির মোজাইকটির একটি মডেল তৈরি করো।
 - খ) প্রত্যেক রঙের কয়টি করে টাইলস লাগবে?
 - গ) মোট কতগুলো টাইলস প্রয়োজন হবে?

৫. ছকের খালি ঘরগুলো পুরণ করো:

ক্রমিক নং	১ম পদ a	সাধারণ অনুপাত <i>r</i>	পদসংখ্যা n	nতম পদ	S_n
i.	128	1/2		1/2	
ii.		-3	8	-2187	
iii.	$\frac{1}{\sqrt{2}}$	$-\sqrt{2}$		$8\sqrt{2}$	
iv.		-2	7	128	
v.	2	2			254
vi.	12			768	1524
vii.	27	$\frac{1}{3}$		1/3	
viii.		4	6		4095

৬.

চিত্র নং	চিত্ৰ	কয়েন সংখ্যা
1	•	1
2	••	3
3	•	6
4	• • • • • • • • • • • • • • • • • • • •	10
••••		

n	সারির সংখ্যাগুলো	সারির সংখ্যাগুলোর সমষ্টি
1	1, 1	1 + 1 = 2
2	1, 2, 1	1 + 2 + 1 = 4
3	1 3 3 1	1 + 3 + 3 + 1 = 8
4	1 4 6 4 1	1 + 4 + 6 + 4 + 1 = 16
••••		

ছক- ১

ছক- ২

- ক) ছক- ১ এর অনুক্রমটি নিবিড়ভাবে পর্যবেক্ষণ করো। অতঃপর ১০ম চিত্রটি গঠন করে কয়েন সংখ্যা নির্ণয় করো।
- খ) প্রদত্ত তথ্যের আলোকে nতম চিত্রের কয়েন সংখ্যা নির্ণয় করো।
- গ) n=5 হলে, ছক- ২ এর ২য় কলামের সংখ্যাগুলো নির্ণয় করো এবং দেখাও যে, nতম সারির সংখ্যাগুলোর সমষ্টি 2^n সূত্রকে সমর্থন করে।
- ঘ) প্রতিটি সারির সমষ্টিগুলো নিয়ে একটি ধারা তৈরি করো এবং ধারাটির ১ম n সংখ্যক পদের সমষ্টি 2046 হলে, n এর মান নির্ণয় করো।

৭. n এর মান নির্ণয় করো, যেখানে $n \in N$.

i.
$$\sum_{k=1}^{n} (20 - 4k) = -20$$

ii.
$$\sum_{k=1}^{n} (3k+2) = 1105$$

iii.
$$\sum_{k=1}^{n} (-8)$$
. $(0.5)^{k-1} = -\frac{255}{16}$

iv.
$$\sum_{k=1}^{n} (3)^{k-1} = 3280$$

- ৮. একটি সমান্তর ধারার প্রথম, দ্বিতীয় ও ১০তম পদ যথাক্রমে একটি গুণোত্তর ধারার প্রথম, চতুর্থ ও ১৭তম পদের সমান।
 - ক) সমান্তর ধারার ১ম পদ a, সাধারণ অন্তর d এবং গুণোত্তর সাধারণ অনুপাত r হলে, ধারা দুইটি সমন্বয়ে দুইটি সমীকরণ গঠন করো।
 - খ) সাধারণ অনুপাত r এর মান নির্ণয় করো।
 - গ) গুণোত্তর ধারাটির ১০তম পদ 5120 হলে, a ও d এর মান নির্ণয় করো।
 - ঘ) সমান্তর ধারাটির ১ম 20টি পদের সমষ্টি নির্ণয় করো।
- ৯. একটি সমবাহ ত্রিভুজ আঁকো। এর বাহগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহ ত্রিভুজ আঁকো। ওই ত্রিভুজের বাহগুলোর মধ্যবিন্দু সংযোগ করে আরেকটি সমবাহ ত্রিভুজ আঁকো। এইভাবে পর্যায়ক্রমে ১০টি ত্রিভুজ অঞ্জন করলে এবং সর্ববহিস্থ ত্রিভুজটির প্রতি বাহর দৈর্ঘ্য 64 মিমি হলে, সবগুলো ত্রিভুজের পরিসীমার সমষ্টি কত হবে নির্ণয় করো।
- ১০. শাহানা তার শিক্ষা প্রতিষ্ঠানে একটি চারা গাছ রোপণ করলে। এক বছর পর চারা গাছটির উচ্চতা 1.5 ফুট হলো। পরবর্তী বছর এর উচ্চতা 0.75 ফুট বৃদ্ধি পেল। প্রতি বছর গাছটির উচ্চতা পূর্বের বছরের বৃদ্ধিপ্রাপ্ত উচ্চতার 50% বাড়ে। এভাবে বাড়তে থাকলে 20 বছর পরে গাছটির উচ্চতা কত ফুট হবে?
- ১১. তুমি তোমার পরিবারের গত ছয় মাসের খরচের হিসাব জেনে নাও। প্রতি মাসের খরচকে একেকটি পদ বিবেচনা করে সম্ভব হলে একটি ধারায় রূপান্তর করো। তারপর নিচের সমস্যাগুলো সমাধানের চেষ্টা করো।
 - ক) ধারা তৈরি করা সম্ভব হয়েছে কী? হলে, কোন ধরনের ধারা প্রেয়েছ ব্যাখা করো।
 - খ) ধারার সমষ্টিকে একটি সমীকরণের মাধ্যমে প্রকাশ করো।
 - গ) পরবর্তী ছয় মাসে সম্ভাব্য মোট কত খরচ হতে পারে তা নির্ণয় করো।
 - ঘ) পরিবারের মাসিক/বার্ষিক খরচ সম্পর্কে তোমার উপলব্ধিবোধ লিপিবদ্ধ করো।